import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AnimateDiffControlNetPipeline, AutoencoderKL, ControlNetModel, DDIMScheduler, DPMSolverMultistepScheduler, LCMScheduler, MotionAdapter, StableDiffusionPipeline, UNet2DConditionModel, UNetMotionModel, ) from diffusers.models.attention import FreeNoiseTransformerBlock from diffusers.utils import logging from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( IPAdapterTesterMixin, PipelineFromPipeTesterMixin, PipelineTesterMixin, SDFunctionTesterMixin, ) def to_np(tensor): if isinstance(tensor, torch.Tensor): tensor = tensor.detach().cpu().numpy() return tensor class AnimateDiffControlNetPipelineFastTests( IPAdapterTesterMixin, SDFunctionTesterMixin, PipelineTesterMixin, PipelineFromPipeTesterMixin, unittest.TestCase ): pipeline_class = AnimateDiffControlNetPipeline params = TEXT_TO_IMAGE_PARAMS batch_params = TEXT_TO_IMAGE_BATCH_PARAMS.union({"conditioning_frames"}) required_optional_params = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback_on_step_end", "callback_on_step_end_tensor_inputs", ] ) def get_dummy_components(self): cross_attention_dim = 8 block_out_channels = (8, 8) torch.manual_seed(0) unet = UNet2DConditionModel( block_out_channels=block_out_channels, layers_per_block=2, sample_size=8, in_channels=4, out_channels=4, down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=cross_attention_dim, norm_num_groups=2, ) scheduler = DDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="linear", clip_sample=False, ) torch.manual_seed(0) controlnet = ControlNetModel( block_out_channels=block_out_channels, layers_per_block=2, in_channels=4, down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"), cross_attention_dim=cross_attention_dim, conditioning_embedding_out_channels=(8, 8), norm_num_groups=1, ) torch.manual_seed(0) vae = AutoencoderKL( block_out_channels=block_out_channels, in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, norm_num_groups=2, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=cross_attention_dim, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) text_encoder = CLIPTextModel(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") motion_adapter = MotionAdapter( block_out_channels=block_out_channels, motion_layers_per_block=2, motion_norm_num_groups=2, motion_num_attention_heads=4, ) components = { "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "motion_adapter": motion_adapter, "text_encoder": text_encoder, "tokenizer": tokenizer, "feature_extractor": None, "image_encoder": None, } return components def get_dummy_inputs(self, device, seed: int = 0, num_frames: int = 2): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) video_height = 32 video_width = 32 conditioning_frames = [Image.new("RGB", (video_width, video_height))] * num_frames inputs = { "prompt": "A painting of a squirrel eating a burger", "conditioning_frames": conditioning_frames, "generator": generator, "num_inference_steps": 2, "num_frames": num_frames, "guidance_scale": 7.5, "output_type": "pt", } return inputs def test_from_pipe_consistent_config(self): assert self.original_pipeline_class == StableDiffusionPipeline original_repo = "hf-internal-testing/tinier-stable-diffusion-pipe" original_kwargs = {"requires_safety_checker": False} # create original_pipeline_class(sd) pipe_original = self.original_pipeline_class.from_pretrained(original_repo, **original_kwargs) # original_pipeline_class(sd) -> pipeline_class pipe_components = self.get_dummy_components() pipe_additional_components = {} for name, component in pipe_components.items(): if name not in pipe_original.components: pipe_additional_components[name] = component pipe = self.pipeline_class.from_pipe(pipe_original, **pipe_additional_components) # pipeline_class -> original_pipeline_class(sd) original_pipe_additional_components = {} for name, component in pipe_original.components.items(): if name not in pipe.components or not isinstance(component, pipe.components[name].__class__): original_pipe_additional_components[name] = component pipe_original_2 = self.original_pipeline_class.from_pipe(pipe, **original_pipe_additional_components) # compare the config original_config = {k: v for k, v in pipe_original.config.items() if not k.startswith("_")} original_config_2 = {k: v for k, v in pipe_original_2.config.items() if not k.startswith("_")} assert original_config_2 == original_config def test_motion_unet_loading(self): components = self.get_dummy_components() pipe = self.pipeline_class(**components) assert isinstance(pipe.unet, UNetMotionModel) @unittest.skip("Attention slicing is not enabled in this pipeline") def test_attention_slicing_forward_pass(self): pass def test_ip_adapter_single(self): expected_pipe_slice = None if torch_device == "cpu": expected_pipe_slice = np.array( [ 0.6604, 0.4099, 0.4928, 0.5706, 0.5096, 0.5012, 0.6051, 0.5169, 0.5021, 0.4864, 0.4261, 0.5779, 0.5822, 0.4049, 0.5253, 0.6160, 0.4150, 0.5155, ] ) return super().test_ip_adapter_single(expected_pipe_slice=expected_pipe_slice) def test_dict_tuple_outputs_equivalent(self): expected_slice = None if torch_device == "cpu": expected_slice = np.array([0.6051, 0.5169, 0.5021, 0.6160, 0.4150, 0.5155]) return super().test_dict_tuple_outputs_equivalent(expected_slice=expected_slice) def test_inference_batch_single_identical( self, batch_size=2, expected_max_diff=1e-4, additional_params_copy_to_batched_inputs=["num_inference_steps"], ): components = self.get_dummy_components() pipe = self.pipeline_class(**components) for components in pipe.components.values(): if hasattr(components, "set_default_attn_processor"): components.set_default_attn_processor() pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(torch_device) # Reset generator in case it is has been used in self.get_dummy_inputs inputs["generator"] = self.get_generator(0) logger = logging.get_logger(pipe.__module__) logger.setLevel(level=diffusers.logging.FATAL) # batchify inputs batched_inputs = {} batched_inputs.update(inputs) for name in self.batch_params: if name not in inputs: continue value = inputs[name] if name == "prompt": len_prompt = len(value) batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)] batched_inputs[name][-1] = 100 * "very long" else: batched_inputs[name] = batch_size * [value] if "generator" in inputs: batched_inputs["generator"] = [self.get_generator(i) for i in range(batch_size)] if "batch_size" in inputs: batched_inputs["batch_size"] = batch_size for arg in additional_params_copy_to_batched_inputs: batched_inputs[arg] = inputs[arg] output = pipe(**inputs) output_batch = pipe(**batched_inputs) assert output_batch[0].shape[0] == batch_size max_diff = np.abs(to_np(output_batch[0][0]) - to_np(output[0][0])).max() assert max_diff < expected_max_diff @unittest.skipIf(torch_device != "cuda", reason="CUDA and CPU are required to switch devices") def test_to_device(self): components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.set_progress_bar_config(disable=None) pipe.to("cpu") # pipeline creates a new motion UNet under the hood. So we need to check the device from pipe.components model_devices = [ component.device.type for component in pipe.components.values() if hasattr(component, "device") ] self.assertTrue(all(device == "cpu" for device in model_devices)) output_cpu = pipe(**self.get_dummy_inputs("cpu"))[0] self.assertTrue(np.isnan(output_cpu).sum() == 0) pipe.to("cuda") model_devices = [ component.device.type for component in pipe.components.values() if hasattr(component, "device") ] self.assertTrue(all(device == "cuda" for device in model_devices)) output_cuda = pipe(**self.get_dummy_inputs("cuda"))[0] self.assertTrue(np.isnan(to_np(output_cuda)).sum() == 0) def test_to_dtype(self): components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.set_progress_bar_config(disable=None) # pipeline creates a new motion UNet under the hood. So we need to check the dtype from pipe.components model_dtypes = [component.dtype for component in pipe.components.values() if hasattr(component, "dtype")] self.assertTrue(all(dtype == torch.float32 for dtype in model_dtypes)) pipe.to(dtype=torch.float16) model_dtypes = [component.dtype for component in pipe.components.values() if hasattr(component, "dtype")] self.assertTrue(all(dtype == torch.float16 for dtype in model_dtypes)) def test_prompt_embeds(self): components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.set_progress_bar_config(disable=None) pipe.to(torch_device) inputs = self.get_dummy_inputs(torch_device) inputs.pop("prompt") inputs["prompt_embeds"] = torch.randn((1, 4, pipe.text_encoder.config.hidden_size), device=torch_device) pipe(**inputs) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available(), reason="XFormers attention is only available with CUDA and `xformers` installed", ) def test_xformers_attention_forwardGenerator_pass(self): super()._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=False) def test_free_init(self): components = self.get_dummy_components() pipe: AnimateDiffControlNetPipeline = self.pipeline_class(**components) pipe.set_progress_bar_config(disable=None) pipe.to(torch_device) inputs_normal = self.get_dummy_inputs(torch_device) frames_normal = pipe(**inputs_normal).frames[0] pipe.enable_free_init( num_iters=2, use_fast_sampling=True, method="butterworth", order=4, spatial_stop_frequency=0.25, temporal_stop_frequency=0.25, ) inputs_enable_free_init = self.get_dummy_inputs(torch_device) frames_enable_free_init = pipe(**inputs_enable_free_init).frames[0] pipe.disable_free_init() inputs_disable_free_init = self.get_dummy_inputs(torch_device) frames_disable_free_init = pipe(**inputs_disable_free_init).frames[0] sum_enabled = np.abs(to_np(frames_normal) - to_np(frames_enable_free_init)).sum() max_diff_disabled = np.abs(to_np(frames_normal) - to_np(frames_disable_free_init)).max() self.assertGreater( sum_enabled, 1e1, "Enabling of FreeInit should lead to results different from the default pipeline results" ) self.assertLess( max_diff_disabled, 1e-4, "Disabling of FreeInit should lead to results similar to the default pipeline results", ) def test_free_init_with_schedulers(self): components = self.get_dummy_components() pipe: AnimateDiffControlNetPipeline = self.pipeline_class(**components) pipe.set_progress_bar_config(disable=None) pipe.to(torch_device) inputs_normal = self.get_dummy_inputs(torch_device) frames_normal = pipe(**inputs_normal).frames[0] schedulers_to_test = [ DPMSolverMultistepScheduler.from_config( components["scheduler"].config, timestep_spacing="linspace", beta_schedule="linear", algorithm_type="dpmsolver++", steps_offset=1, clip_sample=False, ), LCMScheduler.from_config( components["scheduler"].config, timestep_spacing="linspace", beta_schedule="linear", steps_offset=1, clip_sample=False, ), ] components.pop("scheduler") for scheduler in schedulers_to_test: components["scheduler"] = scheduler pipe: AnimateDiffControlNetPipeline = self.pipeline_class(**components) pipe.set_progress_bar_config(disable=None) pipe.to(torch_device) pipe.enable_free_init(num_iters=2, use_fast_sampling=False) inputs = self.get_dummy_inputs(torch_device) frames_enable_free_init = pipe(**inputs).frames[0] sum_enabled = np.abs(to_np(frames_normal) - to_np(frames_enable_free_init)).sum() self.assertGreater( sum_enabled, 1e1, "Enabling of FreeInit should lead to results different from the default pipeline results", ) def test_free_noise_blocks(self): components = self.get_dummy_components() pipe: AnimateDiffControlNetPipeline = self.pipeline_class(**components) pipe.set_progress_bar_config(disable=None) pipe.to(torch_device) pipe.enable_free_noise() for block in pipe.unet.down_blocks: for motion_module in block.motion_modules: for transformer_block in motion_module.transformer_blocks: self.assertTrue( isinstance(transformer_block, FreeNoiseTransformerBlock), "Motion module transformer blocks must be an instance of `FreeNoiseTransformerBlock` after enabling FreeNoise.", ) pipe.disable_free_noise() for block in pipe.unet.down_blocks: for motion_module in block.motion_modules: for transformer_block in motion_module.transformer_blocks: self.assertFalse( isinstance(transformer_block, FreeNoiseTransformerBlock), "Motion module transformer blocks must not be an instance of `FreeNoiseTransformerBlock` after disabling FreeNoise.", ) def test_free_noise(self): components = self.get_dummy_components() pipe: AnimateDiffControlNetPipeline = self.pipeline_class(**components) pipe.set_progress_bar_config(disable=None) pipe.to(torch_device) inputs_normal = self.get_dummy_inputs(torch_device, num_frames=16) frames_normal = pipe(**inputs_normal).frames[0] for context_length in [8, 9]: for context_stride in [4, 6]: pipe.enable_free_noise(context_length, context_stride) inputs_enable_free_noise = self.get_dummy_inputs(torch_device, num_frames=16) frames_enable_free_noise = pipe(**inputs_enable_free_noise).frames[0] pipe.disable_free_noise() inputs_disable_free_noise = self.get_dummy_inputs(torch_device, num_frames=16) frames_disable_free_noise = pipe(**inputs_disable_free_noise).frames[0] sum_enabled = np.abs(to_np(frames_normal) - to_np(frames_enable_free_noise)).sum() max_diff_disabled = np.abs(to_np(frames_normal) - to_np(frames_disable_free_noise)).max() self.assertGreater( sum_enabled, 1e1, "Enabling of FreeNoise should lead to results different from the default pipeline results", ) self.assertLess( max_diff_disabled, 1e-4, "Disabling of FreeNoise should lead to results similar to the default pipeline results", ) def test_vae_slicing(self, video_count=2): device = "cpu" # ensure determinism for the device-dependent torch.Generator components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) inputs["prompt"] = [inputs["prompt"]] * video_count inputs["conditioning_frames"] = [inputs["conditioning_frames"]] * video_count output_1 = pipe(**inputs) # make sure sliced vae decode yields the same result pipe.enable_vae_slicing() inputs = self.get_dummy_inputs(device) inputs["prompt"] = [inputs["prompt"]] * video_count inputs["conditioning_frames"] = [inputs["conditioning_frames"]] * video_count output_2 = pipe(**inputs) assert np.abs(output_2[0].flatten() - output_1[0].flatten()).max() < 1e-2