import argparse import tempfile import torch from accelerate import load_checkpoint_and_dispatch from diffusers.models.transformers.prior_transformer import PriorTransformer from diffusers.pipelines.shap_e import ShapERenderer """ Example - From the diffusers root directory: Download weights: ```sh $ wget "https://openaipublic.azureedge.net/main/shap-e/text_cond.pt" ``` Convert the model: ```sh $ python scripts/convert_shap_e_to_diffusers.py \ --prior_checkpoint_path /home/yiyi_huggingface_co/shap-e/shap_e_model_cache/text_cond.pt \ --prior_image_checkpoint_path /home/yiyi_huggingface_co/shap-e/shap_e_model_cache/image_cond.pt \ --transmitter_checkpoint_path /home/yiyi_huggingface_co/shap-e/shap_e_model_cache/transmitter.pt\ --dump_path /home/yiyi_huggingface_co/model_repo/shap-e-img2img/shap_e_renderer\ --debug renderer ``` """ # prior PRIOR_ORIGINAL_PREFIX = "wrapped" PRIOR_CONFIG = { "num_attention_heads": 16, "attention_head_dim": 1024 // 16, "num_layers": 24, "embedding_dim": 1024, "num_embeddings": 1024, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, "time_embed_dim": 1024 * 4, "embedding_proj_dim": 768, "clip_embed_dim": 1024 * 2, } def prior_model_from_original_config(): model = PriorTransformer(**PRIOR_CONFIG) return model def prior_original_checkpoint_to_diffusers_checkpoint(model, checkpoint): diffusers_checkpoint = {} # .time_embed.c_fc -> .time_embedding.linear_1 diffusers_checkpoint.update( { "time_embedding.linear_1.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.time_embed.c_fc.weight"], "time_embedding.linear_1.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.time_embed.c_fc.bias"], } ) # .time_embed.c_proj -> .time_embedding.linear_2 diffusers_checkpoint.update( { "time_embedding.linear_2.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.time_embed.c_proj.weight"], "time_embedding.linear_2.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.time_embed.c_proj.bias"], } ) # .input_proj -> .proj_in diffusers_checkpoint.update( { "proj_in.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.input_proj.weight"], "proj_in.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.input_proj.bias"], } ) # .clip_emb -> .embedding_proj diffusers_checkpoint.update( { "embedding_proj.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.clip_embed.weight"], "embedding_proj.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.clip_embed.bias"], } ) # .pos_emb -> .positional_embedding diffusers_checkpoint.update({"positional_embedding": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.pos_emb"][None, :]}) # .ln_pre -> .norm_in diffusers_checkpoint.update( { "norm_in.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.ln_pre.weight"], "norm_in.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.ln_pre.bias"], } ) # .backbone.resblocks. -> .transformer_blocks. for idx in range(len(model.transformer_blocks)): diffusers_transformer_prefix = f"transformer_blocks.{idx}" original_transformer_prefix = f"{PRIOR_ORIGINAL_PREFIX}.backbone.resblocks.{idx}" # .attn -> .attn1 diffusers_attention_prefix = f"{diffusers_transformer_prefix}.attn1" original_attention_prefix = f"{original_transformer_prefix}.attn" diffusers_checkpoint.update( prior_attention_to_diffusers( checkpoint, diffusers_attention_prefix=diffusers_attention_prefix, original_attention_prefix=original_attention_prefix, attention_head_dim=model.attention_head_dim, ) ) # .mlp -> .ff diffusers_ff_prefix = f"{diffusers_transformer_prefix}.ff" original_ff_prefix = f"{original_transformer_prefix}.mlp" diffusers_checkpoint.update( prior_ff_to_diffusers( checkpoint, diffusers_ff_prefix=diffusers_ff_prefix, original_ff_prefix=original_ff_prefix ) ) # .ln_1 -> .norm1 diffusers_checkpoint.update( { f"{diffusers_transformer_prefix}.norm1.weight": checkpoint[ f"{original_transformer_prefix}.ln_1.weight" ], f"{diffusers_transformer_prefix}.norm1.bias": checkpoint[f"{original_transformer_prefix}.ln_1.bias"], } ) # .ln_2 -> .norm3 diffusers_checkpoint.update( { f"{diffusers_transformer_prefix}.norm3.weight": checkpoint[ f"{original_transformer_prefix}.ln_2.weight" ], f"{diffusers_transformer_prefix}.norm3.bias": checkpoint[f"{original_transformer_prefix}.ln_2.bias"], } ) # .ln_post -> .norm_out diffusers_checkpoint.update( { "norm_out.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.ln_post.weight"], "norm_out.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.ln_post.bias"], } ) # .output_proj -> .proj_to_clip_embeddings diffusers_checkpoint.update( { "proj_to_clip_embeddings.weight": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.output_proj.weight"], "proj_to_clip_embeddings.bias": checkpoint[f"{PRIOR_ORIGINAL_PREFIX}.output_proj.bias"], } ) return diffusers_checkpoint def prior_attention_to_diffusers( checkpoint, *, diffusers_attention_prefix, original_attention_prefix, attention_head_dim ): diffusers_checkpoint = {} # .c_qkv -> .{to_q, to_k, to_v} [q_weight, k_weight, v_weight], [q_bias, k_bias, v_bias] = split_attentions( weight=checkpoint[f"{original_attention_prefix}.c_qkv.weight"], bias=checkpoint[f"{original_attention_prefix}.c_qkv.bias"], split=3, chunk_size=attention_head_dim, ) diffusers_checkpoint.update( { f"{diffusers_attention_prefix}.to_q.weight": q_weight, f"{diffusers_attention_prefix}.to_q.bias": q_bias, f"{diffusers_attention_prefix}.to_k.weight": k_weight, f"{diffusers_attention_prefix}.to_k.bias": k_bias, f"{diffusers_attention_prefix}.to_v.weight": v_weight, f"{diffusers_attention_prefix}.to_v.bias": v_bias, } ) # .c_proj -> .to_out.0 diffusers_checkpoint.update( { f"{diffusers_attention_prefix}.to_out.0.weight": checkpoint[f"{original_attention_prefix}.c_proj.weight"], f"{diffusers_attention_prefix}.to_out.0.bias": checkpoint[f"{original_attention_prefix}.c_proj.bias"], } ) return diffusers_checkpoint def prior_ff_to_diffusers(checkpoint, *, diffusers_ff_prefix, original_ff_prefix): diffusers_checkpoint = { # .c_fc -> .net.0.proj f"{diffusers_ff_prefix}.net.{0}.proj.weight": checkpoint[f"{original_ff_prefix}.c_fc.weight"], f"{diffusers_ff_prefix}.net.{0}.proj.bias": checkpoint[f"{original_ff_prefix}.c_fc.bias"], # .c_proj -> .net.2 f"{diffusers_ff_prefix}.net.{2}.weight": checkpoint[f"{original_ff_prefix}.c_proj.weight"], f"{diffusers_ff_prefix}.net.{2}.bias": checkpoint[f"{original_ff_prefix}.c_proj.bias"], } return diffusers_checkpoint # done prior # prior_image (only slightly different from prior) PRIOR_IMAGE_ORIGINAL_PREFIX = "wrapped" # Uses default arguments PRIOR_IMAGE_CONFIG = { "num_attention_heads": 8, "attention_head_dim": 1024 // 8, "num_layers": 24, "embedding_dim": 1024, "num_embeddings": 1024, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "embedding_proj_norm_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, "time_embed_dim": 1024 * 4, "embedding_proj_dim": 1024, "clip_embed_dim": 1024 * 2, } def prior_image_model_from_original_config(): model = PriorTransformer(**PRIOR_IMAGE_CONFIG) return model def prior_image_original_checkpoint_to_diffusers_checkpoint(model, checkpoint): diffusers_checkpoint = {} # .time_embed.c_fc -> .time_embedding.linear_1 diffusers_checkpoint.update( { "time_embedding.linear_1.weight": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.time_embed.c_fc.weight"], "time_embedding.linear_1.bias": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.time_embed.c_fc.bias"], } ) # .time_embed.c_proj -> .time_embedding.linear_2 diffusers_checkpoint.update( { "time_embedding.linear_2.weight": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.time_embed.c_proj.weight"], "time_embedding.linear_2.bias": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.time_embed.c_proj.bias"], } ) # .input_proj -> .proj_in diffusers_checkpoint.update( { "proj_in.weight": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.input_proj.weight"], "proj_in.bias": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.input_proj.bias"], } ) # .clip_embed.0 -> .embedding_proj_norm diffusers_checkpoint.update( { "embedding_proj_norm.weight": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.clip_embed.0.weight"], "embedding_proj_norm.bias": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.clip_embed.0.bias"], } ) # ..clip_embed.1 -> .embedding_proj diffusers_checkpoint.update( { "embedding_proj.weight": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.clip_embed.1.weight"], "embedding_proj.bias": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.clip_embed.1.bias"], } ) # .pos_emb -> .positional_embedding diffusers_checkpoint.update( {"positional_embedding": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.pos_emb"][None, :]} ) # .ln_pre -> .norm_in diffusers_checkpoint.update( { "norm_in.weight": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.ln_pre.weight"], "norm_in.bias": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.ln_pre.bias"], } ) # .backbone.resblocks. -> .transformer_blocks. for idx in range(len(model.transformer_blocks)): diffusers_transformer_prefix = f"transformer_blocks.{idx}" original_transformer_prefix = f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.backbone.resblocks.{idx}" # .attn -> .attn1 diffusers_attention_prefix = f"{diffusers_transformer_prefix}.attn1" original_attention_prefix = f"{original_transformer_prefix}.attn" diffusers_checkpoint.update( prior_attention_to_diffusers( checkpoint, diffusers_attention_prefix=diffusers_attention_prefix, original_attention_prefix=original_attention_prefix, attention_head_dim=model.attention_head_dim, ) ) # .mlp -> .ff diffusers_ff_prefix = f"{diffusers_transformer_prefix}.ff" original_ff_prefix = f"{original_transformer_prefix}.mlp" diffusers_checkpoint.update( prior_ff_to_diffusers( checkpoint, diffusers_ff_prefix=diffusers_ff_prefix, original_ff_prefix=original_ff_prefix ) ) # .ln_1 -> .norm1 diffusers_checkpoint.update( { f"{diffusers_transformer_prefix}.norm1.weight": checkpoint[ f"{original_transformer_prefix}.ln_1.weight" ], f"{diffusers_transformer_prefix}.norm1.bias": checkpoint[f"{original_transformer_prefix}.ln_1.bias"], } ) # .ln_2 -> .norm3 diffusers_checkpoint.update( { f"{diffusers_transformer_prefix}.norm3.weight": checkpoint[ f"{original_transformer_prefix}.ln_2.weight" ], f"{diffusers_transformer_prefix}.norm3.bias": checkpoint[f"{original_transformer_prefix}.ln_2.bias"], } ) # .ln_post -> .norm_out diffusers_checkpoint.update( { "norm_out.weight": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.ln_post.weight"], "norm_out.bias": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.ln_post.bias"], } ) # .output_proj -> .proj_to_clip_embeddings diffusers_checkpoint.update( { "proj_to_clip_embeddings.weight": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.output_proj.weight"], "proj_to_clip_embeddings.bias": checkpoint[f"{PRIOR_IMAGE_ORIGINAL_PREFIX}.output_proj.bias"], } ) return diffusers_checkpoint # done prior_image # renderer ## create the lookup table for marching cubes method used in MeshDecoder MC_TABLE = [ [], [[0, 1, 0, 2, 0, 4]], [[1, 0, 1, 5, 1, 3]], [[0, 4, 1, 5, 0, 2], [1, 5, 1, 3, 0, 2]], [[2, 0, 2, 3, 2, 6]], [[0, 1, 2, 3, 0, 4], [2, 3, 2, 6, 0, 4]], [[1, 0, 1, 5, 1, 3], [2, 6, 0, 2, 3, 2]], [[3, 2, 2, 6, 3, 1], [3, 1, 2, 6, 1, 5], [1, 5, 2, 6, 0, 4]], [[3, 1, 3, 7, 3, 2]], [[0, 2, 0, 4, 0, 1], [3, 7, 2, 3, 1, 3]], [[1, 5, 3, 7, 1, 0], [3, 7, 3, 2, 1, 0]], [[2, 0, 0, 4, 2, 3], [2, 3, 0, 4, 3, 7], [3, 7, 0, 4, 1, 5]], [[2, 0, 3, 1, 2, 6], [3, 1, 3, 7, 2, 6]], [[1, 3, 3, 7, 1, 0], [1, 0, 3, 7, 0, 4], [0, 4, 3, 7, 2, 6]], [[0, 1, 1, 5, 0, 2], [0, 2, 1, 5, 2, 6], [2, 6, 1, 5, 3, 7]], [[0, 4, 1, 5, 3, 7], [0, 4, 3, 7, 2, 6]], [[4, 0, 4, 6, 4, 5]], [[0, 2, 4, 6, 0, 1], [4, 6, 4, 5, 0, 1]], [[1, 5, 1, 3, 1, 0], [4, 6, 5, 4, 0, 4]], [[5, 1, 1, 3, 5, 4], [5, 4, 1, 3, 4, 6], [4, 6, 1, 3, 0, 2]], [[2, 0, 2, 3, 2, 6], [4, 5, 0, 4, 6, 4]], [[6, 4, 4, 5, 6, 2], [6, 2, 4, 5, 2, 3], [2, 3, 4, 5, 0, 1]], [[2, 6, 2, 0, 3, 2], [1, 0, 1, 5, 3, 1], [6, 4, 5, 4, 0, 4]], [[1, 3, 5, 4, 1, 5], [1, 3, 4, 6, 5, 4], [1, 3, 3, 2, 4, 6], [3, 2, 2, 6, 4, 6]], [[3, 1, 3, 7, 3, 2], [6, 4, 5, 4, 0, 4]], [[4, 5, 0, 1, 4, 6], [0, 1, 0, 2, 4, 6], [7, 3, 2, 3, 1, 3]], [[3, 2, 1, 0, 3, 7], [1, 0, 1, 5, 3, 7], [6, 4, 5, 4, 0, 4]], [[3, 7, 3, 2, 1, 5], [3, 2, 6, 4, 1, 5], [1, 5, 6, 4, 5, 4], [3, 2, 2, 0, 6, 4]], [[3, 7, 2, 6, 3, 1], [2, 6, 2, 0, 3, 1], [5, 4, 0, 4, 6, 4]], [[1, 0, 1, 3, 5, 4], [1, 3, 2, 6, 5, 4], [1, 3, 3, 7, 2, 6], [5, 4, 2, 6, 4, 6]], [[0, 1, 1, 5, 0, 2], [0, 2, 1, 5, 2, 6], [2, 6, 1, 5, 3, 7], [4, 5, 0, 4, 4, 6]], [[6, 2, 4, 6, 4, 5], [4, 5, 5, 1, 6, 2], [6, 2, 5, 1, 7, 3]], [[5, 1, 5, 4, 5, 7]], [[0, 1, 0, 2, 0, 4], [5, 7, 1, 5, 4, 5]], [[1, 0, 5, 4, 1, 3], [5, 4, 5, 7, 1, 3]], [[4, 5, 5, 7, 4, 0], [4, 0, 5, 7, 0, 2], [0, 2, 5, 7, 1, 3]], [[2, 0, 2, 3, 2, 6], [7, 5, 1, 5, 4, 5]], [[2, 6, 0, 4, 2, 3], [0, 4, 0, 1, 2, 3], [7, 5, 1, 5, 4, 5]], [[5, 7, 1, 3, 5, 4], [1, 3, 1, 0, 5, 4], [6, 2, 0, 2, 3, 2]], [[3, 1, 3, 2, 7, 5], [3, 2, 0, 4, 7, 5], [3, 2, 2, 6, 0, 4], [7, 5, 0, 4, 5, 4]], [[3, 7, 3, 2, 3, 1], [5, 4, 7, 5, 1, 5]], [[0, 4, 0, 1, 2, 0], [3, 1, 3, 7, 2, 3], [4, 5, 7, 5, 1, 5]], [[7, 3, 3, 2, 7, 5], [7, 5, 3, 2, 5, 4], [5, 4, 3, 2, 1, 0]], [[0, 4, 2, 3, 0, 2], [0, 4, 3, 7, 2, 3], [0, 4, 4, 5, 3, 7], [4, 5, 5, 7, 3, 7]], [[2, 0, 3, 1, 2, 6], [3, 1, 3, 7, 2, 6], [4, 5, 7, 5, 1, 5]], [[1, 3, 3, 7, 1, 0], [1, 0, 3, 7, 0, 4], [0, 4, 3, 7, 2, 6], [5, 7, 1, 5, 5, 4]], [[2, 6, 2, 0, 3, 7], [2, 0, 4, 5, 3, 7], [3, 7, 4, 5, 7, 5], [2, 0, 0, 1, 4, 5]], [[4, 0, 5, 4, 5, 7], [5, 7, 7, 3, 4, 0], [4, 0, 7, 3, 6, 2]], [[4, 6, 5, 7, 4, 0], [5, 7, 5, 1, 4, 0]], [[1, 0, 0, 2, 1, 5], [1, 5, 0, 2, 5, 7], [5, 7, 0, 2, 4, 6]], [[0, 4, 4, 6, 0, 1], [0, 1, 4, 6, 1, 3], [1, 3, 4, 6, 5, 7]], [[0, 2, 4, 6, 5, 7], [0, 2, 5, 7, 1, 3]], [[5, 1, 4, 0, 5, 7], [4, 0, 4, 6, 5, 7], [3, 2, 6, 2, 0, 2]], [[2, 3, 2, 6, 0, 1], [2, 6, 7, 5, 0, 1], [0, 1, 7, 5, 1, 5], [2, 6, 6, 4, 7, 5]], [[0, 4, 4, 6, 0, 1], [0, 1, 4, 6, 1, 3], [1, 3, 4, 6, 5, 7], [2, 6, 0, 2, 2, 3]], [[3, 1, 2, 3, 2, 6], [2, 6, 6, 4, 3, 1], [3, 1, 6, 4, 7, 5]], [[4, 6, 5, 7, 4, 0], [5, 7, 5, 1, 4, 0], [2, 3, 1, 3, 7, 3]], [[1, 0, 0, 2, 1, 5], [1, 5, 0, 2, 5, 7], [5, 7, 0, 2, 4, 6], [3, 2, 1, 3, 3, 7]], [[0, 1, 0, 4, 2, 3], [0, 4, 5, 7, 2, 3], [0, 4, 4, 6, 5, 7], [2, 3, 5, 7, 3, 7]], [[7, 5, 3, 7, 3, 2], [3, 2, 2, 0, 7, 5], [7, 5, 2, 0, 6, 4]], [[0, 4, 4, 6, 5, 7], [0, 4, 5, 7, 1, 5], [0, 2, 1, 3, 3, 7], [3, 7, 2, 6, 0, 2]], [ [3, 1, 7, 3, 6, 2], [6, 2, 0, 1, 3, 1], [6, 4, 0, 1, 6, 2], [6, 4, 5, 1, 0, 1], [6, 4, 7, 5, 5, 1], ], [ [4, 0, 6, 4, 7, 5], [7, 5, 1, 0, 4, 0], [7, 3, 1, 0, 7, 5], [7, 3, 2, 0, 1, 0], [7, 3, 6, 2, 2, 0], ], [[7, 3, 6, 2, 6, 4], [7, 5, 7, 3, 6, 4]], [[6, 2, 6, 7, 6, 4]], [[0, 4, 0, 1, 0, 2], [6, 7, 4, 6, 2, 6]], [[1, 0, 1, 5, 1, 3], [7, 6, 4, 6, 2, 6]], [[1, 3, 0, 2, 1, 5], [0, 2, 0, 4, 1, 5], [7, 6, 4, 6, 2, 6]], [[2, 3, 6, 7, 2, 0], [6, 7, 6, 4, 2, 0]], [[4, 0, 0, 1, 4, 6], [4, 6, 0, 1, 6, 7], [6, 7, 0, 1, 2, 3]], [[6, 4, 2, 0, 6, 7], [2, 0, 2, 3, 6, 7], [5, 1, 3, 1, 0, 1]], [[1, 5, 1, 3, 0, 4], [1, 3, 7, 6, 0, 4], [0, 4, 7, 6, 4, 6], [1, 3, 3, 2, 7, 6]], [[3, 2, 3, 1, 3, 7], [6, 4, 2, 6, 7, 6]], [[3, 7, 3, 2, 1, 3], [0, 2, 0, 4, 1, 0], [7, 6, 4, 6, 2, 6]], [[1, 5, 3, 7, 1, 0], [3, 7, 3, 2, 1, 0], [4, 6, 2, 6, 7, 6]], [[2, 0, 0, 4, 2, 3], [2, 3, 0, 4, 3, 7], [3, 7, 0, 4, 1, 5], [6, 4, 2, 6, 6, 7]], [[7, 6, 6, 4, 7, 3], [7, 3, 6, 4, 3, 1], [3, 1, 6, 4, 2, 0]], [[0, 1, 4, 6, 0, 4], [0, 1, 6, 7, 4, 6], [0, 1, 1, 3, 6, 7], [1, 3, 3, 7, 6, 7]], [[0, 2, 0, 1, 4, 6], [0, 1, 3, 7, 4, 6], [0, 1, 1, 5, 3, 7], [4, 6, 3, 7, 6, 7]], [[7, 3, 6, 7, 6, 4], [6, 4, 4, 0, 7, 3], [7, 3, 4, 0, 5, 1]], [[4, 0, 6, 2, 4, 5], [6, 2, 6, 7, 4, 5]], [[2, 6, 6, 7, 2, 0], [2, 0, 6, 7, 0, 1], [0, 1, 6, 7, 4, 5]], [[6, 7, 4, 5, 6, 2], [4, 5, 4, 0, 6, 2], [3, 1, 0, 1, 5, 1]], [[2, 0, 2, 6, 3, 1], [2, 6, 4, 5, 3, 1], [2, 6, 6, 7, 4, 5], [3, 1, 4, 5, 1, 5]], [[0, 2, 2, 3, 0, 4], [0, 4, 2, 3, 4, 5], [4, 5, 2, 3, 6, 7]], [[0, 1, 2, 3, 6, 7], [0, 1, 6, 7, 4, 5]], [[0, 2, 2, 3, 0, 4], [0, 4, 2, 3, 4, 5], [4, 5, 2, 3, 6, 7], [1, 3, 0, 1, 1, 5]], [[5, 4, 1, 5, 1, 3], [1, 3, 3, 2, 5, 4], [5, 4, 3, 2, 7, 6]], [[4, 0, 6, 2, 4, 5], [6, 2, 6, 7, 4, 5], [1, 3, 7, 3, 2, 3]], [[2, 6, 6, 7, 2, 0], [2, 0, 6, 7, 0, 1], [0, 1, 6, 7, 4, 5], [3, 7, 2, 3, 3, 1]], [[0, 1, 1, 5, 3, 7], [0, 1, 3, 7, 2, 3], [0, 4, 2, 6, 6, 7], [6, 7, 4, 5, 0, 4]], [ [6, 2, 7, 6, 5, 4], [5, 4, 0, 2, 6, 2], [5, 1, 0, 2, 5, 4], [5, 1, 3, 2, 0, 2], [5, 1, 7, 3, 3, 2], ], [[3, 1, 3, 7, 2, 0], [3, 7, 5, 4, 2, 0], [2, 0, 5, 4, 0, 4], [3, 7, 7, 6, 5, 4]], [[1, 0, 3, 1, 3, 7], [3, 7, 7, 6, 1, 0], [1, 0, 7, 6, 5, 4]], [ [1, 0, 5, 1, 7, 3], [7, 3, 2, 0, 1, 0], [7, 6, 2, 0, 7, 3], [7, 6, 4, 0, 2, 0], [7, 6, 5, 4, 4, 0], ], [[7, 6, 5, 4, 5, 1], [7, 3, 7, 6, 5, 1]], [[5, 7, 5, 1, 5, 4], [6, 2, 7, 6, 4, 6]], [[0, 2, 0, 4, 1, 0], [5, 4, 5, 7, 1, 5], [2, 6, 7, 6, 4, 6]], [[1, 0, 5, 4, 1, 3], [5, 4, 5, 7, 1, 3], [2, 6, 7, 6, 4, 6]], [[4, 5, 5, 7, 4, 0], [4, 0, 5, 7, 0, 2], [0, 2, 5, 7, 1, 3], [6, 7, 4, 6, 6, 2]], [[2, 3, 6, 7, 2, 0], [6, 7, 6, 4, 2, 0], [1, 5, 4, 5, 7, 5]], [[4, 0, 0, 1, 4, 6], [4, 6, 0, 1, 6, 7], [6, 7, 0, 1, 2, 3], [5, 1, 4, 5, 5, 7]], [[0, 2, 2, 3, 6, 7], [0, 2, 6, 7, 4, 6], [0, 1, 4, 5, 5, 7], [5, 7, 1, 3, 0, 1]], [ [5, 4, 7, 5, 3, 1], [3, 1, 0, 4, 5, 4], [3, 2, 0, 4, 3, 1], [3, 2, 6, 4, 0, 4], [3, 2, 7, 6, 6, 4], ], [[5, 4, 5, 7, 1, 5], [3, 7, 3, 2, 1, 3], [4, 6, 2, 6, 7, 6]], [[1, 0, 0, 2, 0, 4], [1, 5, 5, 4, 5, 7], [3, 2, 1, 3, 3, 7], [2, 6, 7, 6, 4, 6]], [[7, 3, 3, 2, 7, 5], [7, 5, 3, 2, 5, 4], [5, 4, 3, 2, 1, 0], [6, 2, 7, 6, 6, 4]], [ [0, 4, 2, 3, 0, 2], [0, 4, 3, 7, 2, 3], [0, 4, 4, 5, 3, 7], [4, 5, 5, 7, 3, 7], [6, 7, 4, 6, 2, 6], ], [[7, 6, 6, 4, 7, 3], [7, 3, 6, 4, 3, 1], [3, 1, 6, 4, 2, 0], [5, 4, 7, 5, 5, 1]], [ [0, 1, 4, 6, 0, 4], [0, 1, 6, 7, 4, 6], [0, 1, 1, 3, 6, 7], [1, 3, 3, 7, 6, 7], [5, 7, 1, 5, 4, 5], ], [ [6, 7, 4, 6, 0, 2], [0, 2, 3, 7, 6, 7], [0, 1, 3, 7, 0, 2], [0, 1, 5, 7, 3, 7], [0, 1, 4, 5, 5, 7], ], [[4, 0, 6, 7, 4, 6], [4, 0, 7, 3, 6, 7], [4, 0, 5, 7, 7, 3], [4, 5, 5, 7, 4, 0]], [[7, 5, 5, 1, 7, 6], [7, 6, 5, 1, 6, 2], [6, 2, 5, 1, 4, 0]], [[0, 2, 1, 5, 0, 1], [0, 2, 5, 7, 1, 5], [0, 2, 2, 6, 5, 7], [2, 6, 6, 7, 5, 7]], [[1, 3, 1, 0, 5, 7], [1, 0, 2, 6, 5, 7], [5, 7, 2, 6, 7, 6], [1, 0, 0, 4, 2, 6]], [[2, 0, 6, 2, 6, 7], [6, 7, 7, 5, 2, 0], [2, 0, 7, 5, 3, 1]], [[0, 4, 0, 2, 1, 5], [0, 2, 6, 7, 1, 5], [0, 2, 2, 3, 6, 7], [1, 5, 6, 7, 5, 7]], [[7, 6, 5, 7, 5, 1], [5, 1, 1, 0, 7, 6], [7, 6, 1, 0, 3, 2]], [ [2, 0, 3, 2, 7, 6], [7, 6, 4, 0, 2, 0], [7, 5, 4, 0, 7, 6], [7, 5, 1, 0, 4, 0], [7, 5, 3, 1, 1, 0], ], [[7, 5, 3, 1, 3, 2], [7, 6, 7, 5, 3, 2]], [[7, 5, 5, 1, 7, 6], [7, 6, 5, 1, 6, 2], [6, 2, 5, 1, 4, 0], [3, 1, 7, 3, 3, 2]], [ [0, 2, 1, 5, 0, 1], [0, 2, 5, 7, 1, 5], [0, 2, 2, 6, 5, 7], [2, 6, 6, 7, 5, 7], [3, 7, 2, 3, 1, 3], ], [ [3, 7, 2, 3, 0, 1], [0, 1, 5, 7, 3, 7], [0, 4, 5, 7, 0, 1], [0, 4, 6, 7, 5, 7], [0, 4, 2, 6, 6, 7], ], [[2, 0, 3, 7, 2, 3], [2, 0, 7, 5, 3, 7], [2, 0, 6, 7, 7, 5], [2, 6, 6, 7, 2, 0]], [ [5, 7, 1, 5, 0, 4], [0, 4, 6, 7, 5, 7], [0, 2, 6, 7, 0, 4], [0, 2, 3, 7, 6, 7], [0, 2, 1, 3, 3, 7], ], [[1, 0, 5, 7, 1, 5], [1, 0, 7, 6, 5, 7], [1, 0, 3, 7, 7, 6], [1, 3, 3, 7, 1, 0]], [[0, 2, 0, 1, 0, 4], [3, 7, 6, 7, 5, 7]], [[7, 5, 7, 3, 7, 6]], [[7, 3, 7, 5, 7, 6]], [[0, 1, 0, 2, 0, 4], [6, 7, 3, 7, 5, 7]], [[1, 3, 1, 0, 1, 5], [7, 6, 3, 7, 5, 7]], [[0, 4, 1, 5, 0, 2], [1, 5, 1, 3, 0, 2], [6, 7, 3, 7, 5, 7]], [[2, 6, 2, 0, 2, 3], [7, 5, 6, 7, 3, 7]], [[0, 1, 2, 3, 0, 4], [2, 3, 2, 6, 0, 4], [5, 7, 6, 7, 3, 7]], [[1, 5, 1, 3, 0, 1], [2, 3, 2, 6, 0, 2], [5, 7, 6, 7, 3, 7]], [[3, 2, 2, 6, 3, 1], [3, 1, 2, 6, 1, 5], [1, 5, 2, 6, 0, 4], [7, 6, 3, 7, 7, 5]], [[3, 1, 7, 5, 3, 2], [7, 5, 7, 6, 3, 2]], [[7, 6, 3, 2, 7, 5], [3, 2, 3, 1, 7, 5], [4, 0, 1, 0, 2, 0]], [[5, 7, 7, 6, 5, 1], [5, 1, 7, 6, 1, 0], [1, 0, 7, 6, 3, 2]], [[2, 3, 2, 0, 6, 7], [2, 0, 1, 5, 6, 7], [2, 0, 0, 4, 1, 5], [6, 7, 1, 5, 7, 5]], [[6, 2, 2, 0, 6, 7], [6, 7, 2, 0, 7, 5], [7, 5, 2, 0, 3, 1]], [[0, 4, 0, 1, 2, 6], [0, 1, 5, 7, 2, 6], [2, 6, 5, 7, 6, 7], [0, 1, 1, 3, 5, 7]], [[1, 5, 0, 2, 1, 0], [1, 5, 2, 6, 0, 2], [1, 5, 5, 7, 2, 6], [5, 7, 7, 6, 2, 6]], [[5, 1, 7, 5, 7, 6], [7, 6, 6, 2, 5, 1], [5, 1, 6, 2, 4, 0]], [[4, 5, 4, 0, 4, 6], [7, 3, 5, 7, 6, 7]], [[0, 2, 4, 6, 0, 1], [4, 6, 4, 5, 0, 1], [3, 7, 5, 7, 6, 7]], [[4, 6, 4, 5, 0, 4], [1, 5, 1, 3, 0, 1], [6, 7, 3, 7, 5, 7]], [[5, 1, 1, 3, 5, 4], [5, 4, 1, 3, 4, 6], [4, 6, 1, 3, 0, 2], [7, 3, 5, 7, 7, 6]], [[2, 3, 2, 6, 0, 2], [4, 6, 4, 5, 0, 4], [3, 7, 5, 7, 6, 7]], [[6, 4, 4, 5, 6, 2], [6, 2, 4, 5, 2, 3], [2, 3, 4, 5, 0, 1], [7, 5, 6, 7, 7, 3]], [[0, 1, 1, 5, 1, 3], [0, 2, 2, 3, 2, 6], [4, 5, 0, 4, 4, 6], [5, 7, 6, 7, 3, 7]], [ [1, 3, 5, 4, 1, 5], [1, 3, 4, 6, 5, 4], [1, 3, 3, 2, 4, 6], [3, 2, 2, 6, 4, 6], [7, 6, 3, 7, 5, 7], ], [[3, 1, 7, 5, 3, 2], [7, 5, 7, 6, 3, 2], [0, 4, 6, 4, 5, 4]], [[1, 0, 0, 2, 4, 6], [1, 0, 4, 6, 5, 4], [1, 3, 5, 7, 7, 6], [7, 6, 3, 2, 1, 3]], [[5, 7, 7, 6, 5, 1], [5, 1, 7, 6, 1, 0], [1, 0, 7, 6, 3, 2], [4, 6, 5, 4, 4, 0]], [ [7, 5, 6, 7, 2, 3], [2, 3, 1, 5, 7, 5], [2, 0, 1, 5, 2, 3], [2, 0, 4, 5, 1, 5], [2, 0, 6, 4, 4, 5], ], [[6, 2, 2, 0, 6, 7], [6, 7, 2, 0, 7, 5], [7, 5, 2, 0, 3, 1], [4, 0, 6, 4, 4, 5]], [ [4, 6, 5, 4, 1, 0], [1, 0, 2, 6, 4, 6], [1, 3, 2, 6, 1, 0], [1, 3, 7, 6, 2, 6], [1, 3, 5, 7, 7, 6], ], [ [1, 5, 0, 2, 1, 0], [1, 5, 2, 6, 0, 2], [1, 5, 5, 7, 2, 6], [5, 7, 7, 6, 2, 6], [4, 6, 5, 4, 0, 4], ], [[5, 1, 4, 6, 5, 4], [5, 1, 6, 2, 4, 6], [5, 1, 7, 6, 6, 2], [5, 7, 7, 6, 5, 1]], [[5, 4, 7, 6, 5, 1], [7, 6, 7, 3, 5, 1]], [[7, 3, 5, 1, 7, 6], [5, 1, 5, 4, 7, 6], [2, 0, 4, 0, 1, 0]], [[3, 1, 1, 0, 3, 7], [3, 7, 1, 0, 7, 6], [7, 6, 1, 0, 5, 4]], [[0, 2, 0, 4, 1, 3], [0, 4, 6, 7, 1, 3], [1, 3, 6, 7, 3, 7], [0, 4, 4, 5, 6, 7]], [[5, 4, 7, 6, 5, 1], [7, 6, 7, 3, 5, 1], [0, 2, 3, 2, 6, 2]], [[1, 5, 5, 4, 7, 6], [1, 5, 7, 6, 3, 7], [1, 0, 3, 2, 2, 6], [2, 6, 0, 4, 1, 0]], [[3, 1, 1, 0, 3, 7], [3, 7, 1, 0, 7, 6], [7, 6, 1, 0, 5, 4], [2, 0, 3, 2, 2, 6]], [ [2, 3, 6, 2, 4, 0], [4, 0, 1, 3, 2, 3], [4, 5, 1, 3, 4, 0], [4, 5, 7, 3, 1, 3], [4, 5, 6, 7, 7, 3], ], [[1, 5, 5, 4, 1, 3], [1, 3, 5, 4, 3, 2], [3, 2, 5, 4, 7, 6]], [[1, 5, 5, 4, 1, 3], [1, 3, 5, 4, 3, 2], [3, 2, 5, 4, 7, 6], [0, 4, 1, 0, 0, 2]], [[1, 0, 5, 4, 7, 6], [1, 0, 7, 6, 3, 2]], [[2, 3, 0, 2, 0, 4], [0, 4, 4, 5, 2, 3], [2, 3, 4, 5, 6, 7]], [[1, 3, 1, 5, 0, 2], [1, 5, 7, 6, 0, 2], [1, 5, 5, 4, 7, 6], [0, 2, 7, 6, 2, 6]], [ [5, 1, 4, 5, 6, 7], [6, 7, 3, 1, 5, 1], [6, 2, 3, 1, 6, 7], [6, 2, 0, 1, 3, 1], [6, 2, 4, 0, 0, 1], ], [[6, 7, 2, 6, 2, 0], [2, 0, 0, 1, 6, 7], [6, 7, 0, 1, 4, 5]], [[6, 2, 4, 0, 4, 5], [6, 7, 6, 2, 4, 5]], [[6, 7, 7, 3, 6, 4], [6, 4, 7, 3, 4, 0], [4, 0, 7, 3, 5, 1]], [[1, 5, 1, 0, 3, 7], [1, 0, 4, 6, 3, 7], [1, 0, 0, 2, 4, 6], [3, 7, 4, 6, 7, 6]], [[1, 0, 3, 7, 1, 3], [1, 0, 7, 6, 3, 7], [1, 0, 0, 4, 7, 6], [0, 4, 4, 6, 7, 6]], [[6, 4, 7, 6, 7, 3], [7, 3, 3, 1, 6, 4], [6, 4, 3, 1, 2, 0]], [[6, 7, 7, 3, 6, 4], [6, 4, 7, 3, 4, 0], [4, 0, 7, 3, 5, 1], [2, 3, 6, 2, 2, 0]], [ [7, 6, 3, 7, 1, 5], [1, 5, 4, 6, 7, 6], [1, 0, 4, 6, 1, 5], [1, 0, 2, 6, 4, 6], [1, 0, 3, 2, 2, 6], ], [ [1, 0, 3, 7, 1, 3], [1, 0, 7, 6, 3, 7], [1, 0, 0, 4, 7, 6], [0, 4, 4, 6, 7, 6], [2, 6, 0, 2, 3, 2], ], [[3, 1, 7, 6, 3, 7], [3, 1, 6, 4, 7, 6], [3, 1, 2, 6, 6, 4], [3, 2, 2, 6, 3, 1]], [[3, 2, 3, 1, 7, 6], [3, 1, 0, 4, 7, 6], [7, 6, 0, 4, 6, 4], [3, 1, 1, 5, 0, 4]], [ [0, 1, 2, 0, 6, 4], [6, 4, 5, 1, 0, 1], [6, 7, 5, 1, 6, 4], [6, 7, 3, 1, 5, 1], [6, 7, 2, 3, 3, 1], ], [[0, 1, 4, 0, 4, 6], [4, 6, 6, 7, 0, 1], [0, 1, 6, 7, 2, 3]], [[6, 7, 2, 3, 2, 0], [6, 4, 6, 7, 2, 0]], [ [2, 6, 0, 2, 1, 3], [1, 3, 7, 6, 2, 6], [1, 5, 7, 6, 1, 3], [1, 5, 4, 6, 7, 6], [1, 5, 0, 4, 4, 6], ], [[1, 5, 1, 0, 1, 3], [4, 6, 7, 6, 2, 6]], [[0, 1, 2, 6, 0, 2], [0, 1, 6, 7, 2, 6], [0, 1, 4, 6, 6, 7], [0, 4, 4, 6, 0, 1]], [[6, 7, 6, 2, 6, 4]], [[6, 2, 7, 3, 6, 4], [7, 3, 7, 5, 6, 4]], [[7, 5, 6, 4, 7, 3], [6, 4, 6, 2, 7, 3], [1, 0, 2, 0, 4, 0]], [[6, 2, 7, 3, 6, 4], [7, 3, 7, 5, 6, 4], [0, 1, 5, 1, 3, 1]], [[2, 0, 0, 4, 1, 5], [2, 0, 1, 5, 3, 1], [2, 6, 3, 7, 7, 5], [7, 5, 6, 4, 2, 6]], [[3, 7, 7, 5, 3, 2], [3, 2, 7, 5, 2, 0], [2, 0, 7, 5, 6, 4]], [[3, 2, 3, 7, 1, 0], [3, 7, 6, 4, 1, 0], [3, 7, 7, 5, 6, 4], [1, 0, 6, 4, 0, 4]], [[3, 7, 7, 5, 3, 2], [3, 2, 7, 5, 2, 0], [2, 0, 7, 5, 6, 4], [1, 5, 3, 1, 1, 0]], [ [7, 3, 5, 7, 4, 6], [4, 6, 2, 3, 7, 3], [4, 0, 2, 3, 4, 6], [4, 0, 1, 3, 2, 3], [4, 0, 5, 1, 1, 3], ], [[2, 3, 3, 1, 2, 6], [2, 6, 3, 1, 6, 4], [6, 4, 3, 1, 7, 5]], [[2, 3, 3, 1, 2, 6], [2, 6, 3, 1, 6, 4], [6, 4, 3, 1, 7, 5], [0, 1, 2, 0, 0, 4]], [[1, 0, 1, 5, 3, 2], [1, 5, 4, 6, 3, 2], [3, 2, 4, 6, 2, 6], [1, 5, 5, 7, 4, 6]], [ [0, 2, 4, 0, 5, 1], [5, 1, 3, 2, 0, 2], [5, 7, 3, 2, 5, 1], [5, 7, 6, 2, 3, 2], [5, 7, 4, 6, 6, 2], ], [[2, 0, 3, 1, 7, 5], [2, 0, 7, 5, 6, 4]], [[4, 6, 0, 4, 0, 1], [0, 1, 1, 3, 4, 6], [4, 6, 1, 3, 5, 7]], [[0, 2, 1, 0, 1, 5], [1, 5, 5, 7, 0, 2], [0, 2, 5, 7, 4, 6]], [[5, 7, 4, 6, 4, 0], [5, 1, 5, 7, 4, 0]], [[5, 4, 4, 0, 5, 7], [5, 7, 4, 0, 7, 3], [7, 3, 4, 0, 6, 2]], [[0, 1, 0, 2, 4, 5], [0, 2, 3, 7, 4, 5], [4, 5, 3, 7, 5, 7], [0, 2, 2, 6, 3, 7]], [[5, 4, 4, 0, 5, 7], [5, 7, 4, 0, 7, 3], [7, 3, 4, 0, 6, 2], [1, 0, 5, 1, 1, 3]], [ [1, 5, 3, 1, 2, 0], [2, 0, 4, 5, 1, 5], [2, 6, 4, 5, 2, 0], [2, 6, 7, 5, 4, 5], [2, 6, 3, 7, 7, 5], ], [[2, 3, 0, 4, 2, 0], [2, 3, 4, 5, 0, 4], [2, 3, 3, 7, 4, 5], [3, 7, 7, 5, 4, 5]], [[3, 2, 7, 3, 7, 5], [7, 5, 5, 4, 3, 2], [3, 2, 5, 4, 1, 0]], [ [2, 3, 0, 4, 2, 0], [2, 3, 4, 5, 0, 4], [2, 3, 3, 7, 4, 5], [3, 7, 7, 5, 4, 5], [1, 5, 3, 1, 0, 1], ], [[3, 2, 1, 5, 3, 1], [3, 2, 5, 4, 1, 5], [3, 2, 7, 5, 5, 4], [3, 7, 7, 5, 3, 2]], [[2, 6, 2, 3, 0, 4], [2, 3, 7, 5, 0, 4], [2, 3, 3, 1, 7, 5], [0, 4, 7, 5, 4, 5]], [ [3, 2, 1, 3, 5, 7], [5, 7, 6, 2, 3, 2], [5, 4, 6, 2, 5, 7], [5, 4, 0, 2, 6, 2], [5, 4, 1, 0, 0, 2], ], [ [4, 5, 0, 4, 2, 6], [2, 6, 7, 5, 4, 5], [2, 3, 7, 5, 2, 6], [2, 3, 1, 5, 7, 5], [2, 3, 0, 1, 1, 5], ], [[2, 3, 2, 0, 2, 6], [1, 5, 7, 5, 4, 5]], [[5, 7, 4, 5, 4, 0], [4, 0, 0, 2, 5, 7], [5, 7, 0, 2, 1, 3]], [[5, 4, 1, 0, 1, 3], [5, 7, 5, 4, 1, 3]], [[0, 2, 4, 5, 0, 4], [0, 2, 5, 7, 4, 5], [0, 2, 1, 5, 5, 7], [0, 1, 1, 5, 0, 2]], [[5, 4, 5, 1, 5, 7]], [[4, 6, 6, 2, 4, 5], [4, 5, 6, 2, 5, 1], [5, 1, 6, 2, 7, 3]], [[4, 6, 6, 2, 4, 5], [4, 5, 6, 2, 5, 1], [5, 1, 6, 2, 7, 3], [0, 2, 4, 0, 0, 1]], [[3, 7, 3, 1, 2, 6], [3, 1, 5, 4, 2, 6], [3, 1, 1, 0, 5, 4], [2, 6, 5, 4, 6, 4]], [ [6, 4, 2, 6, 3, 7], [3, 7, 5, 4, 6, 4], [3, 1, 5, 4, 3, 7], [3, 1, 0, 4, 5, 4], [3, 1, 2, 0, 0, 4], ], [[2, 0, 2, 3, 6, 4], [2, 3, 1, 5, 6, 4], [6, 4, 1, 5, 4, 5], [2, 3, 3, 7, 1, 5]], [ [0, 4, 1, 0, 3, 2], [3, 2, 6, 4, 0, 4], [3, 7, 6, 4, 3, 2], [3, 7, 5, 4, 6, 4], [3, 7, 1, 5, 5, 4], ], [ [1, 3, 0, 1, 4, 5], [4, 5, 7, 3, 1, 3], [4, 6, 7, 3, 4, 5], [4, 6, 2, 3, 7, 3], [4, 6, 0, 2, 2, 3], ], [[3, 7, 3, 1, 3, 2], [5, 4, 6, 4, 0, 4]], [[3, 1, 2, 6, 3, 2], [3, 1, 6, 4, 2, 6], [3, 1, 1, 5, 6, 4], [1, 5, 5, 4, 6, 4]], [ [3, 1, 2, 6, 3, 2], [3, 1, 6, 4, 2, 6], [3, 1, 1, 5, 6, 4], [1, 5, 5, 4, 6, 4], [0, 4, 1, 0, 2, 0], ], [[4, 5, 6, 4, 6, 2], [6, 2, 2, 3, 4, 5], [4, 5, 2, 3, 0, 1]], [[2, 3, 6, 4, 2, 6], [2, 3, 4, 5, 6, 4], [2, 3, 0, 4, 4, 5], [2, 0, 0, 4, 2, 3]], [[1, 3, 5, 1, 5, 4], [5, 4, 4, 6, 1, 3], [1, 3, 4, 6, 0, 2]], [[1, 3, 0, 4, 1, 0], [1, 3, 4, 6, 0, 4], [1, 3, 5, 4, 4, 6], [1, 5, 5, 4, 1, 3]], [[4, 6, 0, 2, 0, 1], [4, 5, 4, 6, 0, 1]], [[4, 6, 4, 0, 4, 5]], [[4, 0, 6, 2, 7, 3], [4, 0, 7, 3, 5, 1]], [[1, 5, 0, 1, 0, 2], [0, 2, 2, 6, 1, 5], [1, 5, 2, 6, 3, 7]], [[3, 7, 1, 3, 1, 0], [1, 0, 0, 4, 3, 7], [3, 7, 0, 4, 2, 6]], [[3, 1, 2, 0, 2, 6], [3, 7, 3, 1, 2, 6]], [[0, 4, 2, 0, 2, 3], [2, 3, 3, 7, 0, 4], [0, 4, 3, 7, 1, 5]], [[3, 7, 1, 5, 1, 0], [3, 2, 3, 7, 1, 0]], [[0, 4, 1, 3, 0, 1], [0, 4, 3, 7, 1, 3], [0, 4, 2, 3, 3, 7], [0, 2, 2, 3, 0, 4]], [[3, 7, 3, 1, 3, 2]], [[2, 6, 3, 2, 3, 1], [3, 1, 1, 5, 2, 6], [2, 6, 1, 5, 0, 4]], [[1, 5, 3, 2, 1, 3], [1, 5, 2, 6, 3, 2], [1, 5, 0, 2, 2, 6], [1, 0, 0, 2, 1, 5]], [[2, 3, 0, 1, 0, 4], [2, 6, 2, 3, 0, 4]], [[2, 3, 2, 0, 2, 6]], [[1, 5, 0, 4, 0, 2], [1, 3, 1, 5, 0, 2]], [[1, 5, 1, 0, 1, 3]], [[0, 2, 0, 1, 0, 4]], [], ] def create_mc_lookup_table(): cases = torch.zeros(256, 5, 3, dtype=torch.long) masks = torch.zeros(256, 5, dtype=torch.bool) edge_to_index = { (0, 1): 0, (2, 3): 1, (4, 5): 2, (6, 7): 3, (0, 2): 4, (1, 3): 5, (4, 6): 6, (5, 7): 7, (0, 4): 8, (1, 5): 9, (2, 6): 10, (3, 7): 11, } for i, case in enumerate(MC_TABLE): for j, tri in enumerate(case): for k, (c1, c2) in enumerate(zip(tri[::2], tri[1::2])): cases[i, j, k] = edge_to_index[(c1, c2) if c1 < c2 else (c2, c1)] masks[i, j] = True return cases, masks RENDERER_CONFIG = {} def renderer_model_from_original_config(): model = ShapERenderer(**RENDERER_CONFIG) return model RENDERER_MLP_ORIGINAL_PREFIX = "renderer.nerstf" RENDERER_PARAMS_PROJ_ORIGINAL_PREFIX = "encoder.params_proj" def renderer_model_original_checkpoint_to_diffusers_checkpoint(model, checkpoint): diffusers_checkpoint = {} diffusers_checkpoint.update( {f"mlp.{k}": checkpoint[f"{RENDERER_MLP_ORIGINAL_PREFIX}.{k}"] for k in model.mlp.state_dict().keys()} ) diffusers_checkpoint.update( { f"params_proj.{k}": checkpoint[f"{RENDERER_PARAMS_PROJ_ORIGINAL_PREFIX}.{k}"] for k in model.params_proj.state_dict().keys() } ) diffusers_checkpoint.update({"void.background": model.state_dict()["void.background"]}) cases, masks = create_mc_lookup_table() diffusers_checkpoint.update({"mesh_decoder.cases": cases}) diffusers_checkpoint.update({"mesh_decoder.masks": masks}) return diffusers_checkpoint # done renderer # TODO maybe document and/or can do more efficiently (build indices in for loop and extract once for each split?) def split_attentions(*, weight, bias, split, chunk_size): weights = [None] * split biases = [None] * split weights_biases_idx = 0 for starting_row_index in range(0, weight.shape[0], chunk_size): row_indices = torch.arange(starting_row_index, starting_row_index + chunk_size) weight_rows = weight[row_indices, :] bias_rows = bias[row_indices] if weights[weights_biases_idx] is None: assert weights[weights_biases_idx] is None weights[weights_biases_idx] = weight_rows biases[weights_biases_idx] = bias_rows else: assert weights[weights_biases_idx] is not None weights[weights_biases_idx] = torch.concat([weights[weights_biases_idx], weight_rows]) biases[weights_biases_idx] = torch.concat([biases[weights_biases_idx], bias_rows]) weights_biases_idx = (weights_biases_idx + 1) % split return weights, biases # done unet utils # Driver functions def prior(*, args, checkpoint_map_location): print("loading prior") prior_checkpoint = torch.load(args.prior_checkpoint_path, map_location=checkpoint_map_location) prior_model = prior_model_from_original_config() prior_diffusers_checkpoint = prior_original_checkpoint_to_diffusers_checkpoint(prior_model, prior_checkpoint) del prior_checkpoint load_prior_checkpoint_to_model(prior_diffusers_checkpoint, prior_model) print("done loading prior") return prior_model def prior_image(*, args, checkpoint_map_location): print("loading prior_image") print(f"load checkpoint from {args.prior_image_checkpoint_path}") prior_checkpoint = torch.load(args.prior_image_checkpoint_path, map_location=checkpoint_map_location) prior_model = prior_image_model_from_original_config() prior_diffusers_checkpoint = prior_image_original_checkpoint_to_diffusers_checkpoint(prior_model, prior_checkpoint) del prior_checkpoint load_prior_checkpoint_to_model(prior_diffusers_checkpoint, prior_model) print("done loading prior_image") return prior_model def renderer(*, args, checkpoint_map_location): print(" loading renderer") renderer_checkpoint = torch.load(args.transmitter_checkpoint_path, map_location=checkpoint_map_location) renderer_model = renderer_model_from_original_config() renderer_diffusers_checkpoint = renderer_model_original_checkpoint_to_diffusers_checkpoint( renderer_model, renderer_checkpoint ) del renderer_checkpoint load_checkpoint_to_model(renderer_diffusers_checkpoint, renderer_model, strict=True) print("done loading renderer") return renderer_model # prior model will expect clip_mean and clip_std, whic are missing from the state_dict PRIOR_EXPECTED_MISSING_KEYS = ["clip_mean", "clip_std"] def load_prior_checkpoint_to_model(checkpoint, model): with tempfile.NamedTemporaryFile() as file: torch.save(checkpoint, file.name) del checkpoint missing_keys, unexpected_keys = model.load_state_dict(torch.load(file.name), strict=False) missing_keys = list(set(missing_keys) - set(PRIOR_EXPECTED_MISSING_KEYS)) if len(unexpected_keys) > 0: raise ValueError(f"Unexpected keys when loading prior model: {unexpected_keys}") if len(missing_keys) > 0: raise ValueError(f"Missing keys when loading prior model: {missing_keys}") def load_checkpoint_to_model(checkpoint, model, strict=False): with tempfile.NamedTemporaryFile() as file: torch.save(checkpoint, file.name) del checkpoint if strict: model.load_state_dict(torch.load(file.name), strict=True) else: load_checkpoint_and_dispatch(model, file.name, device_map="auto") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--prior_checkpoint_path", default=None, type=str, required=False, help="Path to the prior checkpoint to convert.", ) parser.add_argument( "--prior_image_checkpoint_path", default=None, type=str, required=False, help="Path to the prior_image checkpoint to convert.", ) parser.add_argument( "--transmitter_checkpoint_path", default=None, type=str, required=False, help="Path to the transmitter checkpoint to convert.", ) parser.add_argument( "--checkpoint_load_device", default="cpu", type=str, required=False, help="The device passed to `map_location` when loading checkpoints.", ) parser.add_argument( "--debug", default=None, type=str, required=False, help="Only run a specific stage of the convert script. Used for debugging", ) args = parser.parse_args() print(f"loading checkpoints to {args.checkpoint_load_device}") checkpoint_map_location = torch.device(args.checkpoint_load_device) if args.debug is not None: print(f"debug: only executing {args.debug}") if args.debug is None: print("YiYi TO-DO") elif args.debug == "prior": prior_model = prior(args=args, checkpoint_map_location=checkpoint_map_location) prior_model.save_pretrained(args.dump_path) elif args.debug == "prior_image": prior_model = prior_image(args=args, checkpoint_map_location=checkpoint_map_location) prior_model.save_pretrained(args.dump_path) elif args.debug == "renderer": renderer_model = renderer(args=args, checkpoint_map_location=checkpoint_map_location) renderer_model.save_pretrained(args.dump_path) else: raise ValueError(f"unknown debug value : {args.debug}")