import argparse from typing import Dict import torch import torch.nn as nn from diffusers import SparseControlNetModel KEYS_RENAME_MAPPING = { ".attention_blocks.0": ".attn1", ".attention_blocks.1": ".attn2", ".attn1.pos_encoder": ".pos_embed", ".ff_norm": ".norm3", ".norms.0": ".norm1", ".norms.1": ".norm2", ".temporal_transformer": "", } def convert(original_state_dict: Dict[str, nn.Module]) -> Dict[str, nn.Module]: converted_state_dict = {} for key in list(original_state_dict.keys()): renamed_key = key for new_name, old_name in KEYS_RENAME_MAPPING.items(): renamed_key = renamed_key.replace(new_name, old_name) converted_state_dict[renamed_key] = original_state_dict.pop(key) return converted_state_dict def get_args(): parser = argparse.ArgumentParser() parser.add_argument("--ckpt_path", type=str, required=True, help="Path to checkpoint") parser.add_argument("--output_path", type=str, required=True, help="Path to output directory") parser.add_argument( "--max_motion_seq_length", type=int, default=32, help="Max motion sequence length supported by the motion adapter", ) parser.add_argument( "--conditioning_channels", type=int, default=4, help="Number of channels in conditioning input to controlnet" ) parser.add_argument( "--use_simplified_condition_embedding", action="store_true", default=False, help="Whether or not to use simplified condition embedding. When `conditioning_channels==4` i.e. latent inputs, set this to `True`. When `conditioning_channels==3` i.e. image inputs, set this to `False`", ) parser.add_argument( "--save_fp16", action="store_true", default=False, help="Whether or not to save model in fp16 precision along with fp32", ) parser.add_argument( "--push_to_hub", action="store_true", default=False, help="Whether or not to push saved model to the HF hub" ) return parser.parse_args() if __name__ == "__main__": args = get_args() state_dict = torch.load(args.ckpt_path, map_location="cpu") if "state_dict" in state_dict.keys(): state_dict: dict = state_dict["state_dict"] controlnet = SparseControlNetModel( conditioning_channels=args.conditioning_channels, motion_max_seq_length=args.max_motion_seq_length, use_simplified_condition_embedding=args.use_simplified_condition_embedding, ) state_dict = convert(state_dict) controlnet.load_state_dict(state_dict, strict=True) controlnet.save_pretrained(args.output_path, push_to_hub=args.push_to_hub) if args.save_fp16: controlnet = controlnet.to(dtype=torch.float16) controlnet.save_pretrained(args.output_path, variant="fp16", push_to_hub=args.push_to_hub)