import inspect import os from argparse import ArgumentParser import numpy as np import torch from muse import MaskGiTUViT, VQGANModel from muse import PipelineMuse as OldPipelineMuse from transformers import CLIPTextModelWithProjection, CLIPTokenizer from diffusers import VQModel from diffusers.models.attention_processor import AttnProcessor from diffusers.models.unets.uvit_2d import UVit2DModel from diffusers.pipelines.amused.pipeline_amused import AmusedPipeline from diffusers.schedulers import AmusedScheduler torch.backends.cuda.enable_flash_sdp(False) torch.backends.cuda.enable_mem_efficient_sdp(False) torch.backends.cuda.enable_math_sdp(True) os.environ["CUDA_LAUNCH_BLOCKING"] = "1" os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":16:8" torch.use_deterministic_algorithms(True) # Enable CUDNN deterministic mode torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False torch.backends.cuda.matmul.allow_tf32 = False device = "cuda" def main(): args = ArgumentParser() args.add_argument("--model_256", action="store_true") args.add_argument("--write_to", type=str, required=False, default=None) args.add_argument("--transformer_path", type=str, required=False, default=None) args = args.parse_args() transformer_path = args.transformer_path subfolder = "transformer" if transformer_path is None: if args.model_256: transformer_path = "openMUSE/muse-256" else: transformer_path = ( "../research-run-512-checkpoints/research-run-512-with-downsample-checkpoint-554000/unwrapped_model/" ) subfolder = None old_transformer = MaskGiTUViT.from_pretrained(transformer_path, subfolder=subfolder) old_transformer.to(device) old_vae = VQGANModel.from_pretrained("openMUSE/muse-512", subfolder="vae") old_vae.to(device) vqvae = make_vqvae(old_vae) tokenizer = CLIPTokenizer.from_pretrained("openMUSE/muse-512", subfolder="text_encoder") text_encoder = CLIPTextModelWithProjection.from_pretrained("openMUSE/muse-512", subfolder="text_encoder") text_encoder.to(device) transformer = make_transformer(old_transformer, args.model_256) scheduler = AmusedScheduler(mask_token_id=old_transformer.config.mask_token_id) new_pipe = AmusedPipeline( vqvae=vqvae, tokenizer=tokenizer, text_encoder=text_encoder, transformer=transformer, scheduler=scheduler ) old_pipe = OldPipelineMuse( vae=old_vae, transformer=old_transformer, text_encoder=text_encoder, tokenizer=tokenizer ) old_pipe.to(device) if args.model_256: transformer_seq_len = 256 orig_size = (256, 256) else: transformer_seq_len = 1024 orig_size = (512, 512) old_out = old_pipe( "dog", generator=torch.Generator(device).manual_seed(0), transformer_seq_len=transformer_seq_len, orig_size=orig_size, timesteps=12, )[0] new_out = new_pipe("dog", generator=torch.Generator(device).manual_seed(0)).images[0] old_out = np.array(old_out) new_out = np.array(new_out) diff = np.abs(old_out.astype(np.float64) - new_out.astype(np.float64)) # assert diff diff.sum() == 0 print("skipping pipeline full equivalence check") print(f"max diff: {diff.max()}, diff.sum() / diff.size {diff.sum() / diff.size}") if args.model_256: assert diff.max() <= 3 assert diff.sum() / diff.size < 0.7 else: assert diff.max() <= 1 assert diff.sum() / diff.size < 0.4 if args.write_to is not None: new_pipe.save_pretrained(args.write_to) def make_transformer(old_transformer, model_256): args = dict(old_transformer.config) force_down_up_sample = args["force_down_up_sample"] signature = inspect.signature(UVit2DModel.__init__) args_ = { "downsample": force_down_up_sample, "upsample": force_down_up_sample, "block_out_channels": args["block_out_channels"][0], "sample_size": 16 if model_256 else 32, } for s in list(signature.parameters.keys()): if s in ["self", "downsample", "upsample", "sample_size", "block_out_channels"]: continue args_[s] = args[s] new_transformer = UVit2DModel(**args_) new_transformer.to(device) new_transformer.set_attn_processor(AttnProcessor()) state_dict = old_transformer.state_dict() state_dict["cond_embed.linear_1.weight"] = state_dict.pop("cond_embed.0.weight") state_dict["cond_embed.linear_2.weight"] = state_dict.pop("cond_embed.2.weight") for i in range(22): state_dict[f"transformer_layers.{i}.norm1.norm.weight"] = state_dict.pop( f"transformer_layers.{i}.attn_layer_norm.weight" ) state_dict[f"transformer_layers.{i}.norm1.linear.weight"] = state_dict.pop( f"transformer_layers.{i}.self_attn_adaLN_modulation.mapper.weight" ) state_dict[f"transformer_layers.{i}.attn1.to_q.weight"] = state_dict.pop( f"transformer_layers.{i}.attention.query.weight" ) state_dict[f"transformer_layers.{i}.attn1.to_k.weight"] = state_dict.pop( f"transformer_layers.{i}.attention.key.weight" ) state_dict[f"transformer_layers.{i}.attn1.to_v.weight"] = state_dict.pop( f"transformer_layers.{i}.attention.value.weight" ) state_dict[f"transformer_layers.{i}.attn1.to_out.0.weight"] = state_dict.pop( f"transformer_layers.{i}.attention.out.weight" ) state_dict[f"transformer_layers.{i}.norm2.norm.weight"] = state_dict.pop( f"transformer_layers.{i}.crossattn_layer_norm.weight" ) state_dict[f"transformer_layers.{i}.norm2.linear.weight"] = state_dict.pop( f"transformer_layers.{i}.cross_attn_adaLN_modulation.mapper.weight" ) state_dict[f"transformer_layers.{i}.attn2.to_q.weight"] = state_dict.pop( f"transformer_layers.{i}.crossattention.query.weight" ) state_dict[f"transformer_layers.{i}.attn2.to_k.weight"] = state_dict.pop( f"transformer_layers.{i}.crossattention.key.weight" ) state_dict[f"transformer_layers.{i}.attn2.to_v.weight"] = state_dict.pop( f"transformer_layers.{i}.crossattention.value.weight" ) state_dict[f"transformer_layers.{i}.attn2.to_out.0.weight"] = state_dict.pop( f"transformer_layers.{i}.crossattention.out.weight" ) state_dict[f"transformer_layers.{i}.norm3.norm.weight"] = state_dict.pop( f"transformer_layers.{i}.ffn.pre_mlp_layer_norm.weight" ) state_dict[f"transformer_layers.{i}.norm3.linear.weight"] = state_dict.pop( f"transformer_layers.{i}.ffn.adaLN_modulation.mapper.weight" ) wi_0_weight = state_dict.pop(f"transformer_layers.{i}.ffn.wi_0.weight") wi_1_weight = state_dict.pop(f"transformer_layers.{i}.ffn.wi_1.weight") proj_weight = torch.concat([wi_1_weight, wi_0_weight], dim=0) state_dict[f"transformer_layers.{i}.ff.net.0.proj.weight"] = proj_weight state_dict[f"transformer_layers.{i}.ff.net.2.weight"] = state_dict.pop(f"transformer_layers.{i}.ffn.wo.weight") if force_down_up_sample: state_dict["down_block.downsample.norm.weight"] = state_dict.pop("down_blocks.0.downsample.0.norm.weight") state_dict["down_block.downsample.conv.weight"] = state_dict.pop("down_blocks.0.downsample.1.weight") state_dict["up_block.upsample.norm.weight"] = state_dict.pop("up_blocks.0.upsample.0.norm.weight") state_dict["up_block.upsample.conv.weight"] = state_dict.pop("up_blocks.0.upsample.1.weight") state_dict["mlm_layer.layer_norm.weight"] = state_dict.pop("mlm_layer.layer_norm.norm.weight") for i in range(3): state_dict[f"down_block.res_blocks.{i}.norm.weight"] = state_dict.pop( f"down_blocks.0.res_blocks.{i}.norm.norm.weight" ) state_dict[f"down_block.res_blocks.{i}.channelwise_linear_1.weight"] = state_dict.pop( f"down_blocks.0.res_blocks.{i}.channelwise.0.weight" ) state_dict[f"down_block.res_blocks.{i}.channelwise_norm.gamma"] = state_dict.pop( f"down_blocks.0.res_blocks.{i}.channelwise.2.gamma" ) state_dict[f"down_block.res_blocks.{i}.channelwise_norm.beta"] = state_dict.pop( f"down_blocks.0.res_blocks.{i}.channelwise.2.beta" ) state_dict[f"down_block.res_blocks.{i}.channelwise_linear_2.weight"] = state_dict.pop( f"down_blocks.0.res_blocks.{i}.channelwise.4.weight" ) state_dict[f"down_block.res_blocks.{i}.cond_embeds_mapper.weight"] = state_dict.pop( f"down_blocks.0.res_blocks.{i}.adaLN_modulation.mapper.weight" ) state_dict[f"down_block.attention_blocks.{i}.norm1.weight"] = state_dict.pop( f"down_blocks.0.attention_blocks.{i}.attn_layer_norm.weight" ) state_dict[f"down_block.attention_blocks.{i}.attn1.to_q.weight"] = state_dict.pop( f"down_blocks.0.attention_blocks.{i}.attention.query.weight" ) state_dict[f"down_block.attention_blocks.{i}.attn1.to_k.weight"] = state_dict.pop( f"down_blocks.0.attention_blocks.{i}.attention.key.weight" ) state_dict[f"down_block.attention_blocks.{i}.attn1.to_v.weight"] = state_dict.pop( f"down_blocks.0.attention_blocks.{i}.attention.value.weight" ) state_dict[f"down_block.attention_blocks.{i}.attn1.to_out.0.weight"] = state_dict.pop( f"down_blocks.0.attention_blocks.{i}.attention.out.weight" ) state_dict[f"down_block.attention_blocks.{i}.norm2.weight"] = state_dict.pop( f"down_blocks.0.attention_blocks.{i}.crossattn_layer_norm.weight" ) state_dict[f"down_block.attention_blocks.{i}.attn2.to_q.weight"] = state_dict.pop( f"down_blocks.0.attention_blocks.{i}.crossattention.query.weight" ) state_dict[f"down_block.attention_blocks.{i}.attn2.to_k.weight"] = state_dict.pop( f"down_blocks.0.attention_blocks.{i}.crossattention.key.weight" ) state_dict[f"down_block.attention_blocks.{i}.attn2.to_v.weight"] = state_dict.pop( f"down_blocks.0.attention_blocks.{i}.crossattention.value.weight" ) state_dict[f"down_block.attention_blocks.{i}.attn2.to_out.0.weight"] = state_dict.pop( f"down_blocks.0.attention_blocks.{i}.crossattention.out.weight" ) state_dict[f"up_block.res_blocks.{i}.norm.weight"] = state_dict.pop( f"up_blocks.0.res_blocks.{i}.norm.norm.weight" ) state_dict[f"up_block.res_blocks.{i}.channelwise_linear_1.weight"] = state_dict.pop( f"up_blocks.0.res_blocks.{i}.channelwise.0.weight" ) state_dict[f"up_block.res_blocks.{i}.channelwise_norm.gamma"] = state_dict.pop( f"up_blocks.0.res_blocks.{i}.channelwise.2.gamma" ) state_dict[f"up_block.res_blocks.{i}.channelwise_norm.beta"] = state_dict.pop( f"up_blocks.0.res_blocks.{i}.channelwise.2.beta" ) state_dict[f"up_block.res_blocks.{i}.channelwise_linear_2.weight"] = state_dict.pop( f"up_blocks.0.res_blocks.{i}.channelwise.4.weight" ) state_dict[f"up_block.res_blocks.{i}.cond_embeds_mapper.weight"] = state_dict.pop( f"up_blocks.0.res_blocks.{i}.adaLN_modulation.mapper.weight" ) state_dict[f"up_block.attention_blocks.{i}.norm1.weight"] = state_dict.pop( f"up_blocks.0.attention_blocks.{i}.attn_layer_norm.weight" ) state_dict[f"up_block.attention_blocks.{i}.attn1.to_q.weight"] = state_dict.pop( f"up_blocks.0.attention_blocks.{i}.attention.query.weight" ) state_dict[f"up_block.attention_blocks.{i}.attn1.to_k.weight"] = state_dict.pop( f"up_blocks.0.attention_blocks.{i}.attention.key.weight" ) state_dict[f"up_block.attention_blocks.{i}.attn1.to_v.weight"] = state_dict.pop( f"up_blocks.0.attention_blocks.{i}.attention.value.weight" ) state_dict[f"up_block.attention_blocks.{i}.attn1.to_out.0.weight"] = state_dict.pop( f"up_blocks.0.attention_blocks.{i}.attention.out.weight" ) state_dict[f"up_block.attention_blocks.{i}.norm2.weight"] = state_dict.pop( f"up_blocks.0.attention_blocks.{i}.crossattn_layer_norm.weight" ) state_dict[f"up_block.attention_blocks.{i}.attn2.to_q.weight"] = state_dict.pop( f"up_blocks.0.attention_blocks.{i}.crossattention.query.weight" ) state_dict[f"up_block.attention_blocks.{i}.attn2.to_k.weight"] = state_dict.pop( f"up_blocks.0.attention_blocks.{i}.crossattention.key.weight" ) state_dict[f"up_block.attention_blocks.{i}.attn2.to_v.weight"] = state_dict.pop( f"up_blocks.0.attention_blocks.{i}.crossattention.value.weight" ) state_dict[f"up_block.attention_blocks.{i}.attn2.to_out.0.weight"] = state_dict.pop( f"up_blocks.0.attention_blocks.{i}.crossattention.out.weight" ) for key in list(state_dict.keys()): if key.startswith("up_blocks.0"): key_ = "up_block." + ".".join(key.split(".")[2:]) state_dict[key_] = state_dict.pop(key) if key.startswith("down_blocks.0"): key_ = "down_block." + ".".join(key.split(".")[2:]) state_dict[key_] = state_dict.pop(key) new_transformer.load_state_dict(state_dict) input_ids = torch.randint(0, 10, (1, 32, 32), device=old_transformer.device) encoder_hidden_states = torch.randn((1, 77, 768), device=old_transformer.device) cond_embeds = torch.randn((1, 768), device=old_transformer.device) micro_conds = torch.tensor([[512, 512, 0, 0, 6]], dtype=torch.float32, device=old_transformer.device) old_out = old_transformer(input_ids.reshape(1, -1), encoder_hidden_states, cond_embeds, micro_conds) old_out = old_out.reshape(1, 32, 32, 8192).permute(0, 3, 1, 2) new_out = new_transformer(input_ids, encoder_hidden_states, cond_embeds, micro_conds) # NOTE: these differences are solely due to using the geglu block that has a single linear layer of # double output dimension instead of two different linear layers max_diff = (old_out - new_out).abs().max() total_diff = (old_out - new_out).abs().sum() print(f"Transformer max_diff: {max_diff} total_diff: {total_diff}") assert max_diff < 0.01 assert total_diff < 1500 return new_transformer def make_vqvae(old_vae): new_vae = VQModel( act_fn="silu", block_out_channels=[128, 256, 256, 512, 768], down_block_types=[ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", ], in_channels=3, latent_channels=64, layers_per_block=2, norm_num_groups=32, num_vq_embeddings=8192, out_channels=3, sample_size=32, up_block_types=[ "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", ], mid_block_add_attention=False, lookup_from_codebook=True, ) new_vae.to(device) # fmt: off new_state_dict = {} old_state_dict = old_vae.state_dict() new_state_dict["encoder.conv_in.weight"] = old_state_dict.pop("encoder.conv_in.weight") new_state_dict["encoder.conv_in.bias"] = old_state_dict.pop("encoder.conv_in.bias") convert_vae_block_state_dict(old_state_dict, "encoder.down.0", new_state_dict, "encoder.down_blocks.0") convert_vae_block_state_dict(old_state_dict, "encoder.down.1", new_state_dict, "encoder.down_blocks.1") convert_vae_block_state_dict(old_state_dict, "encoder.down.2", new_state_dict, "encoder.down_blocks.2") convert_vae_block_state_dict(old_state_dict, "encoder.down.3", new_state_dict, "encoder.down_blocks.3") convert_vae_block_state_dict(old_state_dict, "encoder.down.4", new_state_dict, "encoder.down_blocks.4") new_state_dict["encoder.mid_block.resnets.0.norm1.weight"] = old_state_dict.pop("encoder.mid.block_1.norm1.weight") new_state_dict["encoder.mid_block.resnets.0.norm1.bias"] = old_state_dict.pop("encoder.mid.block_1.norm1.bias") new_state_dict["encoder.mid_block.resnets.0.conv1.weight"] = old_state_dict.pop("encoder.mid.block_1.conv1.weight") new_state_dict["encoder.mid_block.resnets.0.conv1.bias"] = old_state_dict.pop("encoder.mid.block_1.conv1.bias") new_state_dict["encoder.mid_block.resnets.0.norm2.weight"] = old_state_dict.pop("encoder.mid.block_1.norm2.weight") new_state_dict["encoder.mid_block.resnets.0.norm2.bias"] = old_state_dict.pop("encoder.mid.block_1.norm2.bias") new_state_dict["encoder.mid_block.resnets.0.conv2.weight"] = old_state_dict.pop("encoder.mid.block_1.conv2.weight") new_state_dict["encoder.mid_block.resnets.0.conv2.bias"] = old_state_dict.pop("encoder.mid.block_1.conv2.bias") new_state_dict["encoder.mid_block.resnets.1.norm1.weight"] = old_state_dict.pop("encoder.mid.block_2.norm1.weight") new_state_dict["encoder.mid_block.resnets.1.norm1.bias"] = old_state_dict.pop("encoder.mid.block_2.norm1.bias") new_state_dict["encoder.mid_block.resnets.1.conv1.weight"] = old_state_dict.pop("encoder.mid.block_2.conv1.weight") new_state_dict["encoder.mid_block.resnets.1.conv1.bias"] = old_state_dict.pop("encoder.mid.block_2.conv1.bias") new_state_dict["encoder.mid_block.resnets.1.norm2.weight"] = old_state_dict.pop("encoder.mid.block_2.norm2.weight") new_state_dict["encoder.mid_block.resnets.1.norm2.bias"] = old_state_dict.pop("encoder.mid.block_2.norm2.bias") new_state_dict["encoder.mid_block.resnets.1.conv2.weight"] = old_state_dict.pop("encoder.mid.block_2.conv2.weight") new_state_dict["encoder.mid_block.resnets.1.conv2.bias"] = old_state_dict.pop("encoder.mid.block_2.conv2.bias") new_state_dict["encoder.conv_norm_out.weight"] = old_state_dict.pop("encoder.norm_out.weight") new_state_dict["encoder.conv_norm_out.bias"] = old_state_dict.pop("encoder.norm_out.bias") new_state_dict["encoder.conv_out.weight"] = old_state_dict.pop("encoder.conv_out.weight") new_state_dict["encoder.conv_out.bias"] = old_state_dict.pop("encoder.conv_out.bias") new_state_dict["quant_conv.weight"] = old_state_dict.pop("quant_conv.weight") new_state_dict["quant_conv.bias"] = old_state_dict.pop("quant_conv.bias") new_state_dict["quantize.embedding.weight"] = old_state_dict.pop("quantize.embedding.weight") new_state_dict["post_quant_conv.weight"] = old_state_dict.pop("post_quant_conv.weight") new_state_dict["post_quant_conv.bias"] = old_state_dict.pop("post_quant_conv.bias") new_state_dict["decoder.conv_in.weight"] = old_state_dict.pop("decoder.conv_in.weight") new_state_dict["decoder.conv_in.bias"] = old_state_dict.pop("decoder.conv_in.bias") new_state_dict["decoder.mid_block.resnets.0.norm1.weight"] = old_state_dict.pop("decoder.mid.block_1.norm1.weight") new_state_dict["decoder.mid_block.resnets.0.norm1.bias"] = old_state_dict.pop("decoder.mid.block_1.norm1.bias") new_state_dict["decoder.mid_block.resnets.0.conv1.weight"] = old_state_dict.pop("decoder.mid.block_1.conv1.weight") new_state_dict["decoder.mid_block.resnets.0.conv1.bias"] = old_state_dict.pop("decoder.mid.block_1.conv1.bias") new_state_dict["decoder.mid_block.resnets.0.norm2.weight"] = old_state_dict.pop("decoder.mid.block_1.norm2.weight") new_state_dict["decoder.mid_block.resnets.0.norm2.bias"] = old_state_dict.pop("decoder.mid.block_1.norm2.bias") new_state_dict["decoder.mid_block.resnets.0.conv2.weight"] = old_state_dict.pop("decoder.mid.block_1.conv2.weight") new_state_dict["decoder.mid_block.resnets.0.conv2.bias"] = old_state_dict.pop("decoder.mid.block_1.conv2.bias") new_state_dict["decoder.mid_block.resnets.1.norm1.weight"] = old_state_dict.pop("decoder.mid.block_2.norm1.weight") new_state_dict["decoder.mid_block.resnets.1.norm1.bias"] = old_state_dict.pop("decoder.mid.block_2.norm1.bias") new_state_dict["decoder.mid_block.resnets.1.conv1.weight"] = old_state_dict.pop("decoder.mid.block_2.conv1.weight") new_state_dict["decoder.mid_block.resnets.1.conv1.bias"] = old_state_dict.pop("decoder.mid.block_2.conv1.bias") new_state_dict["decoder.mid_block.resnets.1.norm2.weight"] = old_state_dict.pop("decoder.mid.block_2.norm2.weight") new_state_dict["decoder.mid_block.resnets.1.norm2.bias"] = old_state_dict.pop("decoder.mid.block_2.norm2.bias") new_state_dict["decoder.mid_block.resnets.1.conv2.weight"] = old_state_dict.pop("decoder.mid.block_2.conv2.weight") new_state_dict["decoder.mid_block.resnets.1.conv2.bias"] = old_state_dict.pop("decoder.mid.block_2.conv2.bias") convert_vae_block_state_dict(old_state_dict, "decoder.up.0", new_state_dict, "decoder.up_blocks.4") convert_vae_block_state_dict(old_state_dict, "decoder.up.1", new_state_dict, "decoder.up_blocks.3") convert_vae_block_state_dict(old_state_dict, "decoder.up.2", new_state_dict, "decoder.up_blocks.2") convert_vae_block_state_dict(old_state_dict, "decoder.up.3", new_state_dict, "decoder.up_blocks.1") convert_vae_block_state_dict(old_state_dict, "decoder.up.4", new_state_dict, "decoder.up_blocks.0") new_state_dict["decoder.conv_norm_out.weight"] = old_state_dict.pop("decoder.norm_out.weight") new_state_dict["decoder.conv_norm_out.bias"] = old_state_dict.pop("decoder.norm_out.bias") new_state_dict["decoder.conv_out.weight"] = old_state_dict.pop("decoder.conv_out.weight") new_state_dict["decoder.conv_out.bias"] = old_state_dict.pop("decoder.conv_out.bias") # fmt: on assert len(old_state_dict.keys()) == 0 new_vae.load_state_dict(new_state_dict) input = torch.randn((1, 3, 512, 512), device=device) input = input.clamp(-1, 1) old_encoder_output = old_vae.quant_conv(old_vae.encoder(input)) new_encoder_output = new_vae.quant_conv(new_vae.encoder(input)) assert (old_encoder_output == new_encoder_output).all() old_decoder_output = old_vae.decoder(old_vae.post_quant_conv(old_encoder_output)) new_decoder_output = new_vae.decoder(new_vae.post_quant_conv(new_encoder_output)) # assert (old_decoder_output == new_decoder_output).all() print("kipping vae decoder equivalence check") print(f"vae decoder diff {(old_decoder_output - new_decoder_output).float().abs().sum()}") old_output = old_vae(input)[0] new_output = new_vae(input)[0] # assert (old_output == new_output).all() print("skipping full vae equivalence check") print(f"vae full diff { (old_output - new_output).float().abs().sum()}") return new_vae def convert_vae_block_state_dict(old_state_dict, prefix_from, new_state_dict, prefix_to): # fmt: off new_state_dict[f"{prefix_to}.resnets.0.norm1.weight"] = old_state_dict.pop(f"{prefix_from}.block.0.norm1.weight") new_state_dict[f"{prefix_to}.resnets.0.norm1.bias"] = old_state_dict.pop(f"{prefix_from}.block.0.norm1.bias") new_state_dict[f"{prefix_to}.resnets.0.conv1.weight"] = old_state_dict.pop(f"{prefix_from}.block.0.conv1.weight") new_state_dict[f"{prefix_to}.resnets.0.conv1.bias"] = old_state_dict.pop(f"{prefix_from}.block.0.conv1.bias") new_state_dict[f"{prefix_to}.resnets.0.norm2.weight"] = old_state_dict.pop(f"{prefix_from}.block.0.norm2.weight") new_state_dict[f"{prefix_to}.resnets.0.norm2.bias"] = old_state_dict.pop(f"{prefix_from}.block.0.norm2.bias") new_state_dict[f"{prefix_to}.resnets.0.conv2.weight"] = old_state_dict.pop(f"{prefix_from}.block.0.conv2.weight") new_state_dict[f"{prefix_to}.resnets.0.conv2.bias"] = old_state_dict.pop(f"{prefix_from}.block.0.conv2.bias") if f"{prefix_from}.block.0.nin_shortcut.weight" in old_state_dict: new_state_dict[f"{prefix_to}.resnets.0.conv_shortcut.weight"] = old_state_dict.pop(f"{prefix_from}.block.0.nin_shortcut.weight") new_state_dict[f"{prefix_to}.resnets.0.conv_shortcut.bias"] = old_state_dict.pop(f"{prefix_from}.block.0.nin_shortcut.bias") new_state_dict[f"{prefix_to}.resnets.1.norm1.weight"] = old_state_dict.pop(f"{prefix_from}.block.1.norm1.weight") new_state_dict[f"{prefix_to}.resnets.1.norm1.bias"] = old_state_dict.pop(f"{prefix_from}.block.1.norm1.bias") new_state_dict[f"{prefix_to}.resnets.1.conv1.weight"] = old_state_dict.pop(f"{prefix_from}.block.1.conv1.weight") new_state_dict[f"{prefix_to}.resnets.1.conv1.bias"] = old_state_dict.pop(f"{prefix_from}.block.1.conv1.bias") new_state_dict[f"{prefix_to}.resnets.1.norm2.weight"] = old_state_dict.pop(f"{prefix_from}.block.1.norm2.weight") new_state_dict[f"{prefix_to}.resnets.1.norm2.bias"] = old_state_dict.pop(f"{prefix_from}.block.1.norm2.bias") new_state_dict[f"{prefix_to}.resnets.1.conv2.weight"] = old_state_dict.pop(f"{prefix_from}.block.1.conv2.weight") new_state_dict[f"{prefix_to}.resnets.1.conv2.bias"] = old_state_dict.pop(f"{prefix_from}.block.1.conv2.bias") if f"{prefix_from}.downsample.conv.weight" in old_state_dict: new_state_dict[f"{prefix_to}.downsamplers.0.conv.weight"] = old_state_dict.pop(f"{prefix_from}.downsample.conv.weight") new_state_dict[f"{prefix_to}.downsamplers.0.conv.bias"] = old_state_dict.pop(f"{prefix_from}.downsample.conv.bias") if f"{prefix_from}.upsample.conv.weight" in old_state_dict: new_state_dict[f"{prefix_to}.upsamplers.0.conv.weight"] = old_state_dict.pop(f"{prefix_from}.upsample.conv.weight") new_state_dict[f"{prefix_to}.upsamplers.0.conv.bias"] = old_state_dict.pop(f"{prefix_from}.upsample.conv.bias") if f"{prefix_from}.block.2.norm1.weight" in old_state_dict: new_state_dict[f"{prefix_to}.resnets.2.norm1.weight"] = old_state_dict.pop(f"{prefix_from}.block.2.norm1.weight") new_state_dict[f"{prefix_to}.resnets.2.norm1.bias"] = old_state_dict.pop(f"{prefix_from}.block.2.norm1.bias") new_state_dict[f"{prefix_to}.resnets.2.conv1.weight"] = old_state_dict.pop(f"{prefix_from}.block.2.conv1.weight") new_state_dict[f"{prefix_to}.resnets.2.conv1.bias"] = old_state_dict.pop(f"{prefix_from}.block.2.conv1.bias") new_state_dict[f"{prefix_to}.resnets.2.norm2.weight"] = old_state_dict.pop(f"{prefix_from}.block.2.norm2.weight") new_state_dict[f"{prefix_to}.resnets.2.norm2.bias"] = old_state_dict.pop(f"{prefix_from}.block.2.norm2.bias") new_state_dict[f"{prefix_to}.resnets.2.conv2.weight"] = old_state_dict.pop(f"{prefix_from}.block.2.conv2.weight") new_state_dict[f"{prefix_to}.resnets.2.conv2.bias"] = old_state_dict.pop(f"{prefix_from}.block.2.conv2.bias") # fmt: on if __name__ == "__main__": main()