# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNet2DModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow torch.backends.cuda.matmul.allow_tf32 = False class TrainingTests(unittest.TestCase): def get_model_optimizer(self, resolution=32): set_seed(0) model = UNet2DModel(sample_size=resolution, in_channels=3, out_channels=3) optimizer = torch.optim.SGD(model.parameters(), lr=0.0001) return model, optimizer @slow def test_training_step_equality(self): device = "cpu" # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable ddpm_scheduler = DDPMScheduler( num_train_timesteps=1000, beta_start=0.0001, beta_end=0.02, beta_schedule="linear", clip_sample=True, ) ddim_scheduler = DDIMScheduler( num_train_timesteps=1000, beta_start=0.0001, beta_end=0.02, beta_schedule="linear", clip_sample=True, ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0) clean_images = [torch.randn((4, 3, 32, 32)).clip(-1, 1).to(device) for _ in range(4)] noise = [torch.randn((4, 3, 32, 32)).to(device) for _ in range(4)] timesteps = [torch.randint(0, 1000, (4,)).long().to(device) for _ in range(4)] # train with a DDPM scheduler model, optimizer = self.get_model_optimizer(resolution=32) model.train().to(device) for i in range(4): optimizer.zero_grad() ddpm_noisy_images = ddpm_scheduler.add_noise(clean_images[i], noise[i], timesteps[i]) ddpm_noise_pred = model(ddpm_noisy_images, timesteps[i]).sample loss = torch.nn.functional.mse_loss(ddpm_noise_pred, noise[i]) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM model, optimizer = self.get_model_optimizer(resolution=32) model.train().to(device) for i in range(4): optimizer.zero_grad() ddim_noisy_images = ddim_scheduler.add_noise(clean_images[i], noise[i], timesteps[i]) ddim_noise_pred = model(ddim_noisy_images, timesteps[i]).sample loss = torch.nn.functional.mse_loss(ddim_noise_pred, noise[i]) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(ddpm_noisy_images, ddim_noisy_images, atol=1e-5)) self.assertTrue(torch.allclose(ddpm_noise_pred, ddim_noise_pred, atol=1e-5))