# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import PIL.Image import torch from diffusers.image_processor import VaeImageProcessor class ImageProcessorTest(unittest.TestCase): @property def dummy_sample(self): batch_size = 1 num_channels = 3 height = 8 width = 8 sample = torch.rand((batch_size, num_channels, height, width)) return sample @property def dummy_mask(self): batch_size = 1 num_channels = 1 height = 8 width = 8 sample = torch.rand((batch_size, num_channels, height, width)) return sample def to_np(self, image): if isinstance(image[0], PIL.Image.Image): return np.stack([np.array(i) for i in image], axis=0) elif isinstance(image, torch.Tensor): return image.cpu().numpy().transpose(0, 2, 3, 1) return image def test_vae_image_processor_pt(self): image_processor = VaeImageProcessor(do_resize=False, do_normalize=True) input_pt = self.dummy_sample input_np = self.to_np(input_pt) for output_type in ["pt", "np", "pil"]: out = image_processor.postprocess( image_processor.preprocess(input_pt), output_type=output_type, ) out_np = self.to_np(out) in_np = (input_np * 255).round() if output_type == "pil" else input_np assert ( np.abs(in_np - out_np).max() < 1e-6 ), f"decoded output does not match input for output_type {output_type}" def test_vae_image_processor_np(self): image_processor = VaeImageProcessor(do_resize=False, do_normalize=True) input_np = self.dummy_sample.cpu().numpy().transpose(0, 2, 3, 1) for output_type in ["pt", "np", "pil"]: out = image_processor.postprocess(image_processor.preprocess(input_np), output_type=output_type) out_np = self.to_np(out) in_np = (input_np * 255).round() if output_type == "pil" else input_np assert ( np.abs(in_np - out_np).max() < 1e-6 ), f"decoded output does not match input for output_type {output_type}" def test_vae_image_processor_pil(self): image_processor = VaeImageProcessor(do_resize=False, do_normalize=True) input_np = self.dummy_sample.cpu().numpy().transpose(0, 2, 3, 1) input_pil = image_processor.numpy_to_pil(input_np) for output_type in ["pt", "np", "pil"]: out = image_processor.postprocess(image_processor.preprocess(input_pil), output_type=output_type) for i, o in zip(input_pil, out): in_np = np.array(i) out_np = self.to_np(out) if output_type == "pil" else (self.to_np(out) * 255).round() assert ( np.abs(in_np - out_np).max() < 1e-6 ), f"decoded output does not match input for output_type {output_type}" def test_preprocess_input_3d(self): image_processor = VaeImageProcessor(do_resize=False, do_normalize=False) input_pt_4d = self.dummy_sample input_pt_3d = input_pt_4d.squeeze(0) out_pt_4d = image_processor.postprocess( image_processor.preprocess(input_pt_4d), output_type="np", ) out_pt_3d = image_processor.postprocess( image_processor.preprocess(input_pt_3d), output_type="np", ) input_np_4d = self.to_np(self.dummy_sample) input_np_3d = input_np_4d.squeeze(0) out_np_4d = image_processor.postprocess( image_processor.preprocess(input_np_4d), output_type="np", ) out_np_3d = image_processor.postprocess( image_processor.preprocess(input_np_3d), output_type="np", ) assert np.abs(out_pt_4d - out_pt_3d).max() < 1e-6 assert np.abs(out_np_4d - out_np_3d).max() < 1e-6 def test_preprocess_input_list(self): image_processor = VaeImageProcessor(do_resize=False, do_normalize=False) input_pt_4d = self.dummy_sample input_pt_list = list(input_pt_4d) out_pt_4d = image_processor.postprocess( image_processor.preprocess(input_pt_4d), output_type="np", ) out_pt_list = image_processor.postprocess( image_processor.preprocess(input_pt_list), output_type="np", ) input_np_4d = self.to_np(self.dummy_sample) input_np_list = list(input_np_4d) out_np_4d = image_processor.postprocess( image_processor.preprocess(input_np_4d), output_type="np", ) out_np_list = image_processor.postprocess( image_processor.preprocess(input_np_list), output_type="np", ) assert np.abs(out_pt_4d - out_pt_list).max() < 1e-6 assert np.abs(out_np_4d - out_np_list).max() < 1e-6 def test_preprocess_input_mask_3d(self): image_processor = VaeImageProcessor( do_resize=False, do_normalize=False, do_binarize=True, do_convert_grayscale=True ) input_pt_4d = self.dummy_mask input_pt_3d = input_pt_4d.squeeze(0) input_pt_2d = input_pt_3d.squeeze(0) out_pt_4d = image_processor.postprocess( image_processor.preprocess(input_pt_4d), output_type="np", ) out_pt_3d = image_processor.postprocess( image_processor.preprocess(input_pt_3d), output_type="np", ) out_pt_2d = image_processor.postprocess( image_processor.preprocess(input_pt_2d), output_type="np", ) input_np_4d = self.to_np(self.dummy_mask) input_np_3d = input_np_4d.squeeze(0) input_np_3d_1 = input_np_4d.squeeze(-1) input_np_2d = input_np_3d.squeeze(-1) out_np_4d = image_processor.postprocess( image_processor.preprocess(input_np_4d), output_type="np", ) out_np_3d = image_processor.postprocess( image_processor.preprocess(input_np_3d), output_type="np", ) out_np_3d_1 = image_processor.postprocess( image_processor.preprocess(input_np_3d_1), output_type="np", ) out_np_2d = image_processor.postprocess( image_processor.preprocess(input_np_2d), output_type="np", ) assert np.abs(out_pt_4d - out_pt_3d).max() == 0 assert np.abs(out_pt_4d - out_pt_2d).max() == 0 assert np.abs(out_np_4d - out_np_3d).max() == 0 assert np.abs(out_np_4d - out_np_3d_1).max() == 0 assert np.abs(out_np_4d - out_np_2d).max() == 0 def test_preprocess_input_mask_list(self): image_processor = VaeImageProcessor(do_resize=False, do_normalize=False, do_convert_grayscale=True) input_pt_4d = self.dummy_mask input_pt_3d = input_pt_4d.squeeze(0) input_pt_2d = input_pt_3d.squeeze(0) inputs_pt = [input_pt_4d, input_pt_3d, input_pt_2d] inputs_pt_list = [[input_pt] for input_pt in inputs_pt] for input_pt, input_pt_list in zip(inputs_pt, inputs_pt_list): out_pt = image_processor.postprocess( image_processor.preprocess(input_pt), output_type="np", ) out_pt_list = image_processor.postprocess( image_processor.preprocess(input_pt_list), output_type="np", ) assert np.abs(out_pt - out_pt_list).max() < 1e-6 input_np_4d = self.to_np(self.dummy_mask) input_np_3d = input_np_4d.squeeze(0) input_np_2d = input_np_3d.squeeze(-1) inputs_np = [input_np_4d, input_np_3d, input_np_2d] inputs_np_list = [[input_np] for input_np in inputs_np] for input_np, input_np_list in zip(inputs_np, inputs_np_list): out_np = image_processor.postprocess( image_processor.preprocess(input_np), output_type="np", ) out_np_list = image_processor.postprocess( image_processor.preprocess(input_np_list), output_type="np", ) assert np.abs(out_np - out_np_list).max() < 1e-6 def test_preprocess_input_mask_3d_batch(self): image_processor = VaeImageProcessor(do_resize=False, do_normalize=False, do_convert_grayscale=True) # create a dummy mask input with batch_size 2 dummy_mask_batch = torch.cat([self.dummy_mask] * 2, axis=0) # squeeze out the channel dimension input_pt_3d = dummy_mask_batch.squeeze(1) input_np_3d = self.to_np(dummy_mask_batch).squeeze(-1) input_pt_3d_list = list(input_pt_3d) input_np_3d_list = list(input_np_3d) out_pt_3d = image_processor.postprocess( image_processor.preprocess(input_pt_3d), output_type="np", ) out_pt_3d_list = image_processor.postprocess( image_processor.preprocess(input_pt_3d_list), output_type="np", ) assert np.abs(out_pt_3d - out_pt_3d_list).max() < 1e-6 out_np_3d = image_processor.postprocess( image_processor.preprocess(input_np_3d), output_type="np", ) out_np_3d_list = image_processor.postprocess( image_processor.preprocess(input_np_3d_list), output_type="np", ) assert np.abs(out_np_3d - out_np_3d_list).max() < 1e-6 def test_vae_image_processor_resize_pt(self): image_processor = VaeImageProcessor(do_resize=True, vae_scale_factor=1) input_pt = self.dummy_sample b, c, h, w = input_pt.shape scale = 2 out_pt = image_processor.resize(image=input_pt, height=h // scale, width=w // scale) exp_pt_shape = (b, c, h // scale, w // scale) assert ( out_pt.shape == exp_pt_shape ), f"resized image output shape '{out_pt.shape}' didn't match expected shape '{exp_pt_shape}'." def test_vae_image_processor_resize_np(self): image_processor = VaeImageProcessor(do_resize=True, vae_scale_factor=1) input_pt = self.dummy_sample b, c, h, w = input_pt.shape scale = 2 input_np = self.to_np(input_pt) out_np = image_processor.resize(image=input_np, height=h // scale, width=w // scale) exp_np_shape = (b, h // scale, w // scale, c) assert ( out_np.shape == exp_np_shape ), f"resized image output shape '{out_np.shape}' didn't match expected shape '{exp_np_shape}'."