#!/usr/bin/env python # coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import logging import os import shutil import sys import tempfile import torch from diffusers import VQModel from diffusers.utils.testing_utils import require_timm sys.path.append("..") from test_examples_utils import ExamplesTestsAccelerate, run_command # noqa: E402 logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger() stream_handler = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_timm class TextToImage(ExamplesTestsAccelerate): @property def test_vqmodel_config(self): return { "_class_name": "VQModel", "_diffusers_version": "0.17.0.dev0", "act_fn": "silu", "block_out_channels": [ 32, ], "down_block_types": [ "DownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 2, "norm_num_groups": 32, "norm_type": "spatial", "num_vq_embeddings": 32, "out_channels": 3, "sample_size": 32, "scaling_factor": 0.18215, "up_block_types": [ "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def test_discriminator_config(self): return { "_class_name": "Discriminator", "_diffusers_version": "0.27.0.dev0", "in_channels": 3, "cond_channels": 0, "hidden_channels": 8, "depth": 4, } def get_vq_and_discriminator_configs(self, tmpdir): vqmodel_config_path = os.path.join(tmpdir, "vqmodel.json") discriminator_config_path = os.path.join(tmpdir, "discriminator.json") with open(vqmodel_config_path, "w") as fp: json.dump(self.test_vqmodel_config, fp) with open(discriminator_config_path, "w") as fp: json.dump(self.test_discriminator_config, fp) return vqmodel_config_path, discriminator_config_path def test_vqmodel(self): with tempfile.TemporaryDirectory() as tmpdir: vqmodel_config_path, discriminator_config_path = self.get_vq_and_discriminator_configs(tmpdir) test_args = f""" examples/vqgan/train_vqgan.py --dataset_name hf-internal-testing/dummy_image_text_data --resolution 32 --image_column image --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 2 --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --model_config_name_or_path {vqmodel_config_path} --discriminator_config_name_or_path {discriminator_config_path} --output_dir {tmpdir} """.split() run_command(self._launch_args + test_args) # save_pretrained smoke test self.assertTrue( os.path.isfile(os.path.join(tmpdir, "discriminator", "diffusion_pytorch_model.safetensors")) ) self.assertTrue(os.path.isfile(os.path.join(tmpdir, "vqmodel", "diffusion_pytorch_model.safetensors"))) def test_vqmodel_checkpointing(self): with tempfile.TemporaryDirectory() as tmpdir: vqmodel_config_path, discriminator_config_path = self.get_vq_and_discriminator_configs(tmpdir) # Run training script with checkpointing # max_train_steps == 4, checkpointing_steps == 2 # Should create checkpoints at steps 2, 4 initial_run_args = f""" examples/vqgan/train_vqgan.py --dataset_name hf-internal-testing/dummy_image_text_data --resolution 32 --image_column image --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 4 --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --model_config_name_or_path {vqmodel_config_path} --discriminator_config_name_or_path {discriminator_config_path} --checkpointing_steps=2 --output_dir {tmpdir} --seed=0 """.split() run_command(self._launch_args + initial_run_args) # check checkpoint directories exist self.assertEqual( {x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-2", "checkpoint-4"}, ) # check can run an intermediate checkpoint model = VQModel.from_pretrained(tmpdir, subfolder="checkpoint-2/vqmodel") image = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _ = model(image) # Remove checkpoint 2 so that we can check only later checkpoints exist after resuming shutil.rmtree(os.path.join(tmpdir, "checkpoint-2")) self.assertEqual( {x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-4"}, ) # Run training script for 2 total steps resuming from checkpoint 4 resume_run_args = f""" examples/vqgan/train_vqgan.py --dataset_name hf-internal-testing/dummy_image_text_data --resolution 32 --image_column image --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 6 --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --model_config_name_or_path {vqmodel_config_path} --discriminator_config_name_or_path {discriminator_config_path} --checkpointing_steps=1 --resume_from_checkpoint={os.path.join(tmpdir, 'checkpoint-4')} --output_dir {tmpdir} --seed=0 """.split() run_command(self._launch_args + resume_run_args) # check can run new fully trained pipeline model = VQModel.from_pretrained(tmpdir, subfolder="vqmodel") image = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _ = model(image) # no checkpoint-2 -> check old checkpoints do not exist # check new checkpoints exist # In the current script, checkpointing_steps 1 is equivalent to checkpointing_steps 2 as after the generator gets trained for one step, # the discriminator gets trained and loss and saving happens after that. Thus we do not expect to get a checkpoint-5 self.assertEqual( {x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-4", "checkpoint-6"}, ) def test_vqmodel_checkpointing_use_ema(self): with tempfile.TemporaryDirectory() as tmpdir: vqmodel_config_path, discriminator_config_path = self.get_vq_and_discriminator_configs(tmpdir) # Run training script with checkpointing # max_train_steps == 4, checkpointing_steps == 2 # Should create checkpoints at steps 2, 4 initial_run_args = f""" examples/vqgan/train_vqgan.py --dataset_name hf-internal-testing/dummy_image_text_data --resolution 32 --image_column image --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 4 --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --model_config_name_or_path {vqmodel_config_path} --discriminator_config_name_or_path {discriminator_config_path} --checkpointing_steps=2 --output_dir {tmpdir} --use_ema --seed=0 """.split() run_command(self._launch_args + initial_run_args) model = VQModel.from_pretrained(tmpdir, subfolder="vqmodel") image = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _ = model(image) # check checkpoint directories exist self.assertEqual( {x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-2", "checkpoint-4"}, ) # check can run an intermediate checkpoint model = VQModel.from_pretrained(tmpdir, subfolder="checkpoint-2/vqmodel") image = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _ = model(image) # Remove checkpoint 2 so that we can check only later checkpoints exist after resuming shutil.rmtree(os.path.join(tmpdir, "checkpoint-2")) # Run training script for 2 total steps resuming from checkpoint 4 resume_run_args = f""" examples/vqgan/train_vqgan.py --dataset_name hf-internal-testing/dummy_image_text_data --resolution 32 --image_column image --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 6 --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --model_config_name_or_path {vqmodel_config_path} --discriminator_config_name_or_path {discriminator_config_path} --checkpointing_steps=1 --resume_from_checkpoint={os.path.join(tmpdir, 'checkpoint-4')} --output_dir {tmpdir} --use_ema --seed=0 """.split() run_command(self._launch_args + resume_run_args) # check can run new fully trained pipeline model = VQModel.from_pretrained(tmpdir, subfolder="vqmodel") image = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _ = model(image) # no checkpoint-2 -> check old checkpoints do not exist # check new checkpoints exist self.assertEqual( {x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-4", "checkpoint-6"}, ) def test_vqmodel_checkpointing_checkpoints_total_limit(self): with tempfile.TemporaryDirectory() as tmpdir: vqmodel_config_path, discriminator_config_path = self.get_vq_and_discriminator_configs(tmpdir) # Run training script with checkpointing # max_train_steps == 6, checkpointing_steps == 2, checkpoints_total_limit == 2 # Should create checkpoints at steps 2, 4, 6 # with checkpoint at step 2 deleted initial_run_args = f""" examples/vqgan/train_vqgan.py --dataset_name hf-internal-testing/dummy_image_text_data --resolution 32 --image_column image --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 6 --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --model_config_name_or_path {vqmodel_config_path} --discriminator_config_name_or_path {discriminator_config_path} --output_dir {tmpdir} --checkpointing_steps=2 --checkpoints_total_limit=2 --seed=0 """.split() run_command(self._launch_args + initial_run_args) model = VQModel.from_pretrained(tmpdir, subfolder="vqmodel") image = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _ = model(image) # check checkpoint directories exist # checkpoint-2 should have been deleted self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-4", "checkpoint-6"}) def test_vqmodel_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self): with tempfile.TemporaryDirectory() as tmpdir: vqmodel_config_path, discriminator_config_path = self.get_vq_and_discriminator_configs(tmpdir) # Run training script with checkpointing # max_train_steps == 4, checkpointing_steps == 2 # Should create checkpoints at steps 2, 4 initial_run_args = f""" examples/vqgan/train_vqgan.py --dataset_name hf-internal-testing/dummy_image_text_data --resolution 32 --image_column image --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 4 --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --model_config_name_or_path {vqmodel_config_path} --discriminator_config_name_or_path {discriminator_config_path} --checkpointing_steps=2 --output_dir {tmpdir} --seed=0 """.split() run_command(self._launch_args + initial_run_args) model = VQModel.from_pretrained(tmpdir, subfolder="vqmodel") image = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _ = model(image) # check checkpoint directories exist self.assertEqual( {x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-2", "checkpoint-4"}, ) # resume and we should try to checkpoint at 6, where we'll have to remove # checkpoint-2 and checkpoint-4 instead of just a single previous checkpoint resume_run_args = f""" examples/vqgan/train_vqgan.py --dataset_name hf-internal-testing/dummy_image_text_data --resolution 32 --image_column image --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 8 --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --model_config_name_or_path {vqmodel_config_path} --discriminator_config_name_or_path {discriminator_config_path} --output_dir {tmpdir} --checkpointing_steps=2 --resume_from_checkpoint={os.path.join(tmpdir, 'checkpoint-4')} --checkpoints_total_limit=2 --seed=0 """.split() run_command(self._launch_args + resume_run_args) model = VQModel.from_pretrained(tmpdir, subfolder="vqmodel") image = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _ = model(image) # check checkpoint directories exist self.assertEqual( {x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-6", "checkpoint-8"}, )