import argparse import torch from safetensors.torch import load_file from diffusers import MotionAdapter def convert_motion_module(original_state_dict): converted_state_dict = {} for k, v in original_state_dict.items(): if "pos_encoder" in k: continue else: converted_state_dict[ k.replace(".norms.0", ".norm1") .replace(".norms.1", ".norm2") .replace(".ff_norm", ".norm3") .replace(".attention_blocks.0", ".attn1") .replace(".attention_blocks.1", ".attn2") .replace(".temporal_transformer", "") ] = v return converted_state_dict def get_args(): parser = argparse.ArgumentParser() parser.add_argument("--ckpt_path", type=str, required=True) parser.add_argument("--output_path", type=str, required=True) parser.add_argument("--use_motion_mid_block", action="store_true") parser.add_argument("--motion_max_seq_length", type=int, default=32) parser.add_argument("--block_out_channels", nargs="+", default=[320, 640, 1280, 1280], type=int) parser.add_argument("--save_fp16", action="store_true") return parser.parse_args() if __name__ == "__main__": args = get_args() if args.ckpt_path.endswith(".safetensors"): state_dict = load_file(args.ckpt_path) else: state_dict = torch.load(args.ckpt_path, map_location="cpu") if "state_dict" in state_dict.keys(): state_dict = state_dict["state_dict"] conv_state_dict = convert_motion_module(state_dict) adapter = MotionAdapter( block_out_channels=args.block_out_channels, use_motion_mid_block=args.use_motion_mid_block, motion_max_seq_length=args.motion_max_seq_length, ) # skip loading position embeddings adapter.load_state_dict(conv_state_dict, strict=False) adapter.save_pretrained(args.output_path) if args.save_fp16: adapter.to(dtype=torch.float16).save_pretrained(args.output_path, variant="fp16")