# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import sys import tempfile import safetensors sys.path.append("..") from test_examples_utils import ExamplesTestsAccelerate, run_command # noqa: E402 logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger() stream_handler = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class DreamBoothLoRASDXLWithEDM(ExamplesTestsAccelerate): def test_dreambooth_lora_sdxl_with_edm(self): with tempfile.TemporaryDirectory() as tmpdir: test_args = f""" examples/dreambooth/train_dreambooth_lora_sdxl.py --pretrained_model_name_or_path hf-internal-testing/tiny-stable-diffusion-xl-pipe --do_edm_style_training --instance_data_dir docs/source/en/imgs --instance_prompt photo --resolution 64 --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 2 --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --output_dir {tmpdir} """.split() run_command(self._launch_args + test_args) # save_pretrained smoke test self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))) # make sure the state_dict has the correct naming in the parameters. lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")) is_lora = all("lora" in k for k in lora_state_dict.keys()) self.assertTrue(is_lora) # when not training the text encoder, all the parameters in the state dict should start # with `"unet"` in their names. starts_with_unet = all(key.startswith("unet") for key in lora_state_dict.keys()) self.assertTrue(starts_with_unet) def test_dreambooth_lora_playground(self): with tempfile.TemporaryDirectory() as tmpdir: test_args = f""" examples/dreambooth/train_dreambooth_lora_sdxl.py --pretrained_model_name_or_path hf-internal-testing/tiny-playground-v2-5-pipe --instance_data_dir docs/source/en/imgs --instance_prompt photo --resolution 64 --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 2 --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --output_dir {tmpdir} """.split() run_command(self._launch_args + test_args) # save_pretrained smoke test self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))) # make sure the state_dict has the correct naming in the parameters. lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")) is_lora = all("lora" in k for k in lora_state_dict.keys()) self.assertTrue(is_lora) # when not training the text encoder, all the parameters in the state dict should start # with `"unet"` in their names. starts_with_unet = all(key.startswith("unet") for key in lora_state_dict.keys()) self.assertTrue(starts_with_unet)