|
import tempfile |
|
|
|
import torch |
|
|
|
from diffusers import ( |
|
DEISMultistepScheduler, |
|
DPMSolverMultistepScheduler, |
|
DPMSolverSinglestepScheduler, |
|
UniPCMultistepScheduler, |
|
) |
|
|
|
from .test_schedulers import SchedulerCommonTest |
|
|
|
|
|
class UniPCMultistepSchedulerTest(SchedulerCommonTest): |
|
scheduler_classes = (UniPCMultistepScheduler,) |
|
forward_default_kwargs = (("num_inference_steps", 25),) |
|
|
|
def get_scheduler_config(self, **kwargs): |
|
config = { |
|
"num_train_timesteps": 1000, |
|
"beta_start": 0.0001, |
|
"beta_end": 0.02, |
|
"beta_schedule": "linear", |
|
"solver_order": 2, |
|
"solver_type": "bh2", |
|
"final_sigmas_type": "sigma_min", |
|
} |
|
|
|
config.update(**kwargs) |
|
return config |
|
|
|
def check_over_configs(self, time_step=0, **config): |
|
kwargs = dict(self.forward_default_kwargs) |
|
num_inference_steps = kwargs.pop("num_inference_steps", None) |
|
sample = self.dummy_sample |
|
residual = 0.1 * sample |
|
dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10] |
|
|
|
for scheduler_class in self.scheduler_classes: |
|
scheduler_config = self.get_scheduler_config(**config) |
|
scheduler = scheduler_class(**scheduler_config) |
|
scheduler.set_timesteps(num_inference_steps) |
|
|
|
scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order] |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
scheduler.save_config(tmpdirname) |
|
new_scheduler = scheduler_class.from_pretrained(tmpdirname) |
|
new_scheduler.set_timesteps(num_inference_steps) |
|
|
|
new_scheduler.model_outputs = dummy_past_residuals[: new_scheduler.config.solver_order] |
|
|
|
output, new_output = sample, sample |
|
for t in range(time_step, time_step + scheduler.config.solver_order + 1): |
|
t = scheduler.timesteps[t] |
|
output = scheduler.step(residual, t, output, **kwargs).prev_sample |
|
new_output = new_scheduler.step(residual, t, new_output, **kwargs).prev_sample |
|
|
|
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" |
|
|
|
def check_over_forward(self, time_step=0, **forward_kwargs): |
|
kwargs = dict(self.forward_default_kwargs) |
|
num_inference_steps = kwargs.pop("num_inference_steps", None) |
|
sample = self.dummy_sample |
|
residual = 0.1 * sample |
|
dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10] |
|
|
|
for scheduler_class in self.scheduler_classes: |
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
scheduler.set_timesteps(num_inference_steps) |
|
|
|
|
|
scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order] |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
scheduler.save_config(tmpdirname) |
|
new_scheduler = scheduler_class.from_pretrained(tmpdirname) |
|
|
|
new_scheduler.set_timesteps(num_inference_steps) |
|
|
|
|
|
new_scheduler.model_outputs = dummy_past_residuals[: new_scheduler.config.solver_order] |
|
|
|
output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample |
|
new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample |
|
|
|
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" |
|
|
|
def full_loop(self, scheduler=None, **config): |
|
if scheduler is None: |
|
scheduler_class = self.scheduler_classes[0] |
|
scheduler_config = self.get_scheduler_config(**config) |
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
scheduler_class = self.scheduler_classes[0] |
|
scheduler_config = self.get_scheduler_config(**config) |
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
num_inference_steps = 10 |
|
model = self.dummy_model() |
|
sample = self.dummy_sample_deter |
|
scheduler.set_timesteps(num_inference_steps) |
|
|
|
for i, t in enumerate(scheduler.timesteps): |
|
residual = model(sample, t) |
|
sample = scheduler.step(residual, t, sample).prev_sample |
|
|
|
return sample |
|
|
|
def test_step_shape(self): |
|
kwargs = dict(self.forward_default_kwargs) |
|
|
|
num_inference_steps = kwargs.pop("num_inference_steps", None) |
|
|
|
for scheduler_class in self.scheduler_classes: |
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
sample = self.dummy_sample |
|
residual = 0.1 * sample |
|
|
|
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): |
|
scheduler.set_timesteps(num_inference_steps) |
|
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): |
|
kwargs["num_inference_steps"] = num_inference_steps |
|
|
|
|
|
dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10] |
|
scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order] |
|
|
|
time_step_0 = scheduler.timesteps[5] |
|
time_step_1 = scheduler.timesteps[6] |
|
|
|
output_0 = scheduler.step(residual, time_step_0, sample, **kwargs).prev_sample |
|
output_1 = scheduler.step(residual, time_step_1, sample, **kwargs).prev_sample |
|
|
|
self.assertEqual(output_0.shape, sample.shape) |
|
self.assertEqual(output_0.shape, output_1.shape) |
|
|
|
def test_switch(self): |
|
|
|
|
|
scheduler = UniPCMultistepScheduler(**self.get_scheduler_config()) |
|
sample = self.full_loop(scheduler=scheduler) |
|
result_mean = torch.mean(torch.abs(sample)) |
|
|
|
assert abs(result_mean.item() - 0.2464) < 1e-3 |
|
|
|
scheduler = DPMSolverSinglestepScheduler.from_config(scheduler.config) |
|
scheduler = DEISMultistepScheduler.from_config(scheduler.config) |
|
scheduler = DPMSolverMultistepScheduler.from_config(scheduler.config) |
|
scheduler = UniPCMultistepScheduler.from_config(scheduler.config) |
|
|
|
sample = self.full_loop(scheduler=scheduler) |
|
result_mean = torch.mean(torch.abs(sample)) |
|
|
|
assert abs(result_mean.item() - 0.2464) < 1e-3 |
|
|
|
def test_timesteps(self): |
|
for timesteps in [25, 50, 100, 999, 1000]: |
|
self.check_over_configs(num_train_timesteps=timesteps) |
|
|
|
def test_thresholding(self): |
|
self.check_over_configs(thresholding=False) |
|
for order in [1, 2, 3]: |
|
for solver_type in ["bh1", "bh2"]: |
|
for threshold in [0.5, 1.0, 2.0]: |
|
for prediction_type in ["epsilon", "sample"]: |
|
self.check_over_configs( |
|
thresholding=True, |
|
prediction_type=prediction_type, |
|
sample_max_value=threshold, |
|
solver_order=order, |
|
solver_type=solver_type, |
|
) |
|
|
|
def test_prediction_type(self): |
|
for prediction_type in ["epsilon", "v_prediction"]: |
|
self.check_over_configs(prediction_type=prediction_type) |
|
|
|
def test_rescale_betas_zero_snr(self): |
|
for rescale_betas_zero_snr in [True, False]: |
|
self.check_over_configs(rescale_betas_zero_snr=rescale_betas_zero_snr) |
|
|
|
def test_solver_order_and_type(self): |
|
for solver_type in ["bh1", "bh2"]: |
|
for order in [1, 2, 3]: |
|
for prediction_type in ["epsilon", "sample"]: |
|
self.check_over_configs( |
|
solver_order=order, |
|
solver_type=solver_type, |
|
prediction_type=prediction_type, |
|
) |
|
sample = self.full_loop( |
|
solver_order=order, |
|
solver_type=solver_type, |
|
prediction_type=prediction_type, |
|
) |
|
assert not torch.isnan(sample).any(), "Samples have nan numbers" |
|
|
|
def test_lower_order_final(self): |
|
self.check_over_configs(lower_order_final=True) |
|
self.check_over_configs(lower_order_final=False) |
|
|
|
def test_inference_steps(self): |
|
for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: |
|
self.check_over_forward(num_inference_steps=num_inference_steps, time_step=0) |
|
|
|
def test_full_loop_no_noise(self): |
|
sample = self.full_loop() |
|
result_mean = torch.mean(torch.abs(sample)) |
|
|
|
assert abs(result_mean.item() - 0.2464) < 1e-3 |
|
|
|
def test_full_loop_with_karras(self): |
|
sample = self.full_loop(use_karras_sigmas=True) |
|
result_mean = torch.mean(torch.abs(sample)) |
|
|
|
assert abs(result_mean.item() - 0.2925) < 1e-3 |
|
|
|
def test_full_loop_with_v_prediction(self): |
|
sample = self.full_loop(prediction_type="v_prediction") |
|
result_mean = torch.mean(torch.abs(sample)) |
|
|
|
assert abs(result_mean.item() - 0.1014) < 1e-3 |
|
|
|
def test_full_loop_with_karras_and_v_prediction(self): |
|
sample = self.full_loop(prediction_type="v_prediction", use_karras_sigmas=True) |
|
result_mean = torch.mean(torch.abs(sample)) |
|
|
|
assert abs(result_mean.item() - 0.1966) < 1e-3 |
|
|
|
def test_fp16_support(self): |
|
for order in [1, 2, 3]: |
|
for solver_type in ["bh1", "bh2"]: |
|
for prediction_type in ["epsilon", "sample", "v_prediction"]: |
|
scheduler_class = self.scheduler_classes[0] |
|
scheduler_config = self.get_scheduler_config( |
|
thresholding=True, |
|
dynamic_thresholding_ratio=0, |
|
prediction_type=prediction_type, |
|
solver_order=order, |
|
solver_type=solver_type, |
|
) |
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
num_inference_steps = 10 |
|
model = self.dummy_model() |
|
sample = self.dummy_sample_deter.half() |
|
scheduler.set_timesteps(num_inference_steps) |
|
|
|
for i, t in enumerate(scheduler.timesteps): |
|
residual = model(sample, t) |
|
sample = scheduler.step(residual, t, sample).prev_sample |
|
|
|
assert sample.dtype == torch.float16 |
|
|
|
def test_full_loop_with_noise(self): |
|
scheduler_class = self.scheduler_classes[0] |
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
num_inference_steps = 10 |
|
t_start = 8 |
|
|
|
model = self.dummy_model() |
|
sample = self.dummy_sample_deter |
|
scheduler.set_timesteps(num_inference_steps) |
|
|
|
|
|
noise = self.dummy_noise_deter |
|
timesteps = scheduler.timesteps[t_start * scheduler.order :] |
|
sample = scheduler.add_noise(sample, noise, timesteps[:1]) |
|
|
|
for i, t in enumerate(timesteps): |
|
residual = model(sample, t) |
|
sample = scheduler.step(residual, t, sample).prev_sample |
|
|
|
result_sum = torch.sum(torch.abs(sample)) |
|
result_mean = torch.mean(torch.abs(sample)) |
|
|
|
assert abs(result_sum.item() - 315.5757) < 1e-2, f" expected result sum 315.5757, but get {result_sum}" |
|
assert abs(result_mean.item() - 0.4109) < 1e-3, f" expected result mean 0.4109, but get {result_mean}" |
|
|
|
|
|
class UniPCMultistepScheduler1DTest(UniPCMultistepSchedulerTest): |
|
@property |
|
def dummy_sample(self): |
|
batch_size = 4 |
|
num_channels = 3 |
|
width = 8 |
|
|
|
sample = torch.rand((batch_size, num_channels, width)) |
|
|
|
return sample |
|
|
|
@property |
|
def dummy_noise_deter(self): |
|
batch_size = 4 |
|
num_channels = 3 |
|
width = 8 |
|
|
|
num_elems = batch_size * num_channels * width |
|
sample = torch.arange(num_elems).flip(-1) |
|
sample = sample.reshape(num_channels, width, batch_size) |
|
sample = sample / num_elems |
|
sample = sample.permute(2, 0, 1) |
|
|
|
return sample |
|
|
|
@property |
|
def dummy_sample_deter(self): |
|
batch_size = 4 |
|
num_channels = 3 |
|
width = 8 |
|
|
|
num_elems = batch_size * num_channels * width |
|
sample = torch.arange(num_elems) |
|
sample = sample.reshape(num_channels, width, batch_size) |
|
sample = sample / num_elems |
|
sample = sample.permute(2, 0, 1) |
|
|
|
return sample |
|
|
|
def test_switch(self): |
|
|
|
|
|
scheduler = UniPCMultistepScheduler(**self.get_scheduler_config()) |
|
sample = self.full_loop(scheduler=scheduler) |
|
result_mean = torch.mean(torch.abs(sample)) |
|
|
|
assert abs(result_mean.item() - 0.2441) < 1e-3 |
|
|
|
scheduler = DPMSolverSinglestepScheduler.from_config(scheduler.config) |
|
scheduler = DEISMultistepScheduler.from_config(scheduler.config) |
|
scheduler = DPMSolverMultistepScheduler.from_config(scheduler.config) |
|
scheduler = UniPCMultistepScheduler.from_config(scheduler.config) |
|
|
|
sample = self.full_loop(scheduler=scheduler) |
|
result_mean = torch.mean(torch.abs(sample)) |
|
|
|
assert abs(result_mean.item() - 0.2441) < 1e-3 |
|
|
|
def test_full_loop_no_noise(self): |
|
sample = self.full_loop() |
|
result_mean = torch.mean(torch.abs(sample)) |
|
|
|
assert abs(result_mean.item() - 0.2441) < 1e-3 |
|
|
|
def test_full_loop_with_karras(self): |
|
sample = self.full_loop(use_karras_sigmas=True) |
|
result_mean = torch.mean(torch.abs(sample)) |
|
|
|
assert abs(result_mean.item() - 0.2898) < 1e-3 |
|
|
|
def test_full_loop_with_v_prediction(self): |
|
sample = self.full_loop(prediction_type="v_prediction") |
|
result_mean = torch.mean(torch.abs(sample)) |
|
|
|
assert abs(result_mean.item() - 0.1014) < 1e-3 |
|
|
|
def test_full_loop_with_karras_and_v_prediction(self): |
|
sample = self.full_loop(prediction_type="v_prediction", use_karras_sigmas=True) |
|
result_mean = torch.mean(torch.abs(sample)) |
|
|
|
assert abs(result_mean.item() - 0.1944) < 1e-3 |
|
|
|
def test_full_loop_with_noise(self): |
|
scheduler_class = self.scheduler_classes[0] |
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
num_inference_steps = 10 |
|
t_start = 8 |
|
|
|
model = self.dummy_model() |
|
sample = self.dummy_sample_deter |
|
scheduler.set_timesteps(num_inference_steps) |
|
|
|
|
|
noise = self.dummy_noise_deter |
|
timesteps = scheduler.timesteps[t_start * scheduler.order :] |
|
sample = scheduler.add_noise(sample, noise, timesteps[:1]) |
|
|
|
for i, t in enumerate(timesteps): |
|
residual = model(sample, t) |
|
sample = scheduler.step(residual, t, sample).prev_sample |
|
|
|
result_sum = torch.sum(torch.abs(sample)) |
|
result_mean = torch.mean(torch.abs(sample)) |
|
|
|
assert abs(result_sum.item() - 39.0870) < 1e-2, f" expected result sum 39.0870, but get {result_sum}" |
|
assert abs(result_mean.item() - 0.4072) < 1e-3, f" expected result mean 0.4072, but get {result_mean}" |
|
|