|
import torch |
|
|
|
from diffusers import CMStochasticIterativeScheduler |
|
|
|
from .test_schedulers import SchedulerCommonTest |
|
|
|
|
|
class CMStochasticIterativeSchedulerTest(SchedulerCommonTest): |
|
scheduler_classes = (CMStochasticIterativeScheduler,) |
|
num_inference_steps = 10 |
|
|
|
def get_scheduler_config(self, **kwargs): |
|
config = { |
|
"num_train_timesteps": 201, |
|
"sigma_min": 0.002, |
|
"sigma_max": 80.0, |
|
} |
|
|
|
config.update(**kwargs) |
|
return config |
|
|
|
|
|
|
|
|
|
|
|
def test_step_shape(self): |
|
num_inference_steps = 10 |
|
|
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = self.scheduler_classes[0](**scheduler_config) |
|
|
|
scheduler.set_timesteps(num_inference_steps) |
|
|
|
timestep_0 = scheduler.timesteps[0] |
|
timestep_1 = scheduler.timesteps[1] |
|
|
|
sample = self.dummy_sample |
|
residual = 0.1 * sample |
|
|
|
output_0 = scheduler.step(residual, timestep_0, sample).prev_sample |
|
output_1 = scheduler.step(residual, timestep_1, sample).prev_sample |
|
|
|
self.assertEqual(output_0.shape, sample.shape) |
|
self.assertEqual(output_0.shape, output_1.shape) |
|
|
|
def test_timesteps(self): |
|
for timesteps in [10, 50, 100, 1000]: |
|
self.check_over_configs(num_train_timesteps=timesteps) |
|
|
|
def test_clip_denoised(self): |
|
for clip_denoised in [True, False]: |
|
self.check_over_configs(clip_denoised=clip_denoised) |
|
|
|
def test_full_loop_no_noise_onestep(self): |
|
scheduler_class = self.scheduler_classes[0] |
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
num_inference_steps = 1 |
|
scheduler.set_timesteps(num_inference_steps) |
|
timesteps = scheduler.timesteps |
|
|
|
generator = torch.manual_seed(0) |
|
|
|
model = self.dummy_model() |
|
sample = self.dummy_sample_deter * scheduler.init_noise_sigma |
|
|
|
for i, t in enumerate(timesteps): |
|
|
|
scaled_sample = scheduler.scale_model_input(sample, t) |
|
|
|
|
|
residual = model(scaled_sample, t) |
|
|
|
|
|
pred_prev_sample = scheduler.step(residual, t, sample, generator=generator).prev_sample |
|
|
|
sample = pred_prev_sample |
|
|
|
result_sum = torch.sum(torch.abs(sample)) |
|
result_mean = torch.mean(torch.abs(sample)) |
|
|
|
assert abs(result_sum.item() - 192.7614) < 1e-2 |
|
assert abs(result_mean.item() - 0.2510) < 1e-3 |
|
|
|
def test_full_loop_no_noise_multistep(self): |
|
scheduler_class = self.scheduler_classes[0] |
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
timesteps = [106, 0] |
|
scheduler.set_timesteps(timesteps=timesteps) |
|
timesteps = scheduler.timesteps |
|
|
|
generator = torch.manual_seed(0) |
|
|
|
model = self.dummy_model() |
|
sample = self.dummy_sample_deter * scheduler.init_noise_sigma |
|
|
|
for t in timesteps: |
|
|
|
scaled_sample = scheduler.scale_model_input(sample, t) |
|
|
|
|
|
residual = model(scaled_sample, t) |
|
|
|
|
|
pred_prev_sample = scheduler.step(residual, t, sample, generator=generator).prev_sample |
|
|
|
sample = pred_prev_sample |
|
|
|
result_sum = torch.sum(torch.abs(sample)) |
|
result_mean = torch.mean(torch.abs(sample)) |
|
|
|
assert abs(result_sum.item() - 347.6357) < 1e-2 |
|
assert abs(result_mean.item() - 0.4527) < 1e-3 |
|
|
|
def test_full_loop_with_noise(self): |
|
scheduler_class = self.scheduler_classes[0] |
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
num_inference_steps = 10 |
|
t_start = 8 |
|
|
|
scheduler.set_timesteps(num_inference_steps) |
|
timesteps = scheduler.timesteps |
|
|
|
generator = torch.manual_seed(0) |
|
|
|
model = self.dummy_model() |
|
sample = self.dummy_sample_deter * scheduler.init_noise_sigma |
|
|
|
noise = self.dummy_noise_deter |
|
timesteps = scheduler.timesteps[t_start * scheduler.order :] |
|
|
|
sample = scheduler.add_noise(sample, noise, timesteps[:1]) |
|
|
|
for t in timesteps: |
|
|
|
scaled_sample = scheduler.scale_model_input(sample, t) |
|
|
|
|
|
residual = model(scaled_sample, t) |
|
|
|
|
|
pred_prev_sample = scheduler.step(residual, t, sample, generator=generator).prev_sample |
|
|
|
sample = pred_prev_sample |
|
|
|
result_sum = torch.sum(torch.abs(sample)) |
|
result_mean = torch.mean(torch.abs(sample)) |
|
|
|
assert abs(result_sum.item() - 763.9186) < 1e-2, f" expected result sum 763.9186, but get {result_sum}" |
|
assert abs(result_mean.item() - 0.9947) < 1e-3, f" expected result mean 0.9947, but get {result_mean}" |
|
|
|
def test_custom_timesteps_increasing_order(self): |
|
scheduler_class = self.scheduler_classes[0] |
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
timesteps = [39, 30, 12, 15, 0] |
|
|
|
with self.assertRaises(ValueError, msg="`timesteps` must be in descending order."): |
|
scheduler.set_timesteps(timesteps=timesteps) |
|
|
|
def test_custom_timesteps_passing_both_num_inference_steps_and_timesteps(self): |
|
scheduler_class = self.scheduler_classes[0] |
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
timesteps = [39, 30, 12, 1, 0] |
|
num_inference_steps = len(timesteps) |
|
|
|
with self.assertRaises(ValueError, msg="Can only pass one of `num_inference_steps` or `timesteps`."): |
|
scheduler.set_timesteps(num_inference_steps=num_inference_steps, timesteps=timesteps) |
|
|
|
def test_custom_timesteps_too_large(self): |
|
scheduler_class = self.scheduler_classes[0] |
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
timesteps = [scheduler.config.num_train_timesteps] |
|
|
|
with self.assertRaises( |
|
ValueError, |
|
msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}", |
|
): |
|
scheduler.set_timesteps(timesteps=timesteps) |
|
|