NadaGh's picture
End of training
3a25a0a verified
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import unittest
import numpy as np
import torch
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyPipeline, KandinskyPriorPipeline, UNet2DConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_numpy,
require_torch_gpu,
slow,
torch_device,
)
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class Dummies:
@property
def text_embedder_hidden_size(self):
return 32
@property
def time_input_dim(self):
return 32
@property
def block_out_channels_0(self):
return self.time_input_dim
@property
def time_embed_dim(self):
return self.time_input_dim * 4
@property
def cross_attention_dim(self):
return 32
@property
def dummy_tokenizer(self):
tokenizer = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base")
return tokenizer
@property
def dummy_text_encoder(self):
torch.manual_seed(0)
config = MCLIPConfig(
numDims=self.cross_attention_dim,
transformerDimensions=self.text_embedder_hidden_size,
hidden_size=self.text_embedder_hidden_size,
intermediate_size=37,
num_attention_heads=4,
num_hidden_layers=5,
vocab_size=1005,
)
text_encoder = MultilingualCLIP(config)
text_encoder = text_encoder.eval()
return text_encoder
@property
def dummy_unet(self):
torch.manual_seed(0)
model_kwargs = {
"in_channels": 4,
# Out channels is double in channels because predicts mean and variance
"out_channels": 8,
"addition_embed_type": "text_image",
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2),
"layers_per_block": 1,
"encoder_hid_dim": self.text_embedder_hidden_size,
"encoder_hid_dim_type": "text_image_proj",
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": None,
}
model = UNet2DConditionModel(**model_kwargs)
return model
@property
def dummy_movq_kwargs(self):
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def dummy_movq(self):
torch.manual_seed(0)
model = VQModel(**self.dummy_movq_kwargs)
return model
def get_dummy_components(self):
text_encoder = self.dummy_text_encoder
tokenizer = self.dummy_tokenizer
unet = self.dummy_unet
movq = self.dummy_movq
scheduler = DDIMScheduler(
num_train_timesteps=1000,
beta_schedule="linear",
beta_start=0.00085,
beta_end=0.012,
clip_sample=False,
set_alpha_to_one=False,
steps_offset=1,
prediction_type="epsilon",
thresholding=False,
)
components = {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"movq": movq,
}
return components
def get_dummy_inputs(self, device, seed=0):
image_embeds = floats_tensor((1, self.cross_attention_dim), rng=random.Random(seed)).to(device)
negative_image_embeds = floats_tensor((1, self.cross_attention_dim), rng=random.Random(seed + 1)).to(device)
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "horse",
"image_embeds": image_embeds,
"negative_image_embeds": negative_image_embeds,
"generator": generator,
"height": 64,
"width": 64,
"guidance_scale": 4.0,
"num_inference_steps": 2,
"output_type": "np",
}
return inputs
class KandinskyPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = KandinskyPipeline
params = [
"prompt",
"image_embeds",
"negative_image_embeds",
]
batch_params = ["prompt", "negative_prompt", "image_embeds", "negative_image_embeds"]
required_optional_params = [
"generator",
"height",
"width",
"latents",
"guidance_scale",
"negative_prompt",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
test_xformers_attention = False
def get_dummy_components(self):
dummy = Dummies()
return dummy.get_dummy_components()
def get_dummy_inputs(self, device, seed=0):
dummy = Dummies()
return dummy.get_dummy_inputs(device=device, seed=seed)
def test_kandinsky(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
output = pipe(**self.get_dummy_inputs(device))
image = output.images
image_from_tuple = pipe(
**self.get_dummy_inputs(device),
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([1.0000, 1.0000, 0.2766, 1.0000, 0.5447, 0.1737, 1.0000, 0.4316, 0.9024])
assert (
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
@require_torch_gpu
def test_offloads(self):
pipes = []
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components).to(torch_device)
pipes.append(sd_pipe)
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components)
sd_pipe.enable_model_cpu_offload()
pipes.append(sd_pipe)
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components)
sd_pipe.enable_sequential_cpu_offload()
pipes.append(sd_pipe)
image_slices = []
for pipe in pipes:
inputs = self.get_dummy_inputs(torch_device)
image = pipe(**inputs).images
image_slices.append(image[0, -3:, -3:, -1].flatten())
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3
assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3
@slow
@require_torch_gpu
class KandinskyPipelineIntegrationTests(unittest.TestCase):
def setUp(self):
# clean up the VRAM before each test
super().setUp()
gc.collect()
torch.cuda.empty_cache()
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_kandinsky_text2img(self):
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinsky/kandinsky_text2img_cat_fp16.npy"
)
pipe_prior = KandinskyPriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-1-prior", torch_dtype=torch.float16
)
pipe_prior.to(torch_device)
pipeline = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1", torch_dtype=torch.float16)
pipeline.to(torch_device)
pipeline.set_progress_bar_config(disable=None)
prompt = "red cat, 4k photo"
generator = torch.Generator(device="cuda").manual_seed(0)
image_emb, zero_image_emb = pipe_prior(
prompt,
generator=generator,
num_inference_steps=5,
negative_prompt="",
).to_tuple()
generator = torch.Generator(device="cuda").manual_seed(0)
output = pipeline(
prompt,
image_embeds=image_emb,
negative_image_embeds=zero_image_emb,
generator=generator,
num_inference_steps=100,
output_type="np",
)
image = output.images[0]
assert image.shape == (512, 512, 3)
assert_mean_pixel_difference(image, expected_image)