stable-diffusion-v1-5-tst_chair
/
diffusers
/tests
/pipelines
/aura_flow
/test_pipeline_aura_flow.py
import unittest | |
import numpy as np | |
import torch | |
from transformers import AutoTokenizer, UMT5EncoderModel | |
from diffusers import AuraFlowPipeline, AuraFlowTransformer2DModel, AutoencoderKL, FlowMatchEulerDiscreteScheduler | |
from diffusers.utils.testing_utils import ( | |
torch_device, | |
) | |
from ..test_pipelines_common import ( | |
PipelineTesterMixin, | |
check_qkv_fusion_matches_attn_procs_length, | |
check_qkv_fusion_processors_exist, | |
) | |
class AuraFlowPipelineFastTests(unittest.TestCase, PipelineTesterMixin): | |
pipeline_class = AuraFlowPipeline | |
params = frozenset( | |
[ | |
"prompt", | |
"height", | |
"width", | |
"guidance_scale", | |
"negative_prompt", | |
"prompt_embeds", | |
"negative_prompt_embeds", | |
] | |
) | |
batch_params = frozenset(["prompt", "negative_prompt"]) | |
def get_dummy_components(self): | |
torch.manual_seed(0) | |
transformer = AuraFlowTransformer2DModel( | |
sample_size=32, | |
patch_size=2, | |
in_channels=4, | |
num_mmdit_layers=1, | |
num_single_dit_layers=1, | |
attention_head_dim=8, | |
num_attention_heads=4, | |
caption_projection_dim=32, | |
joint_attention_dim=32, | |
out_channels=4, | |
pos_embed_max_size=256, | |
) | |
text_encoder = UMT5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-umt5") | |
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") | |
torch.manual_seed(0) | |
vae = AutoencoderKL( | |
block_out_channels=[32, 64], | |
in_channels=3, | |
out_channels=3, | |
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
latent_channels=4, | |
sample_size=32, | |
) | |
scheduler = FlowMatchEulerDiscreteScheduler() | |
return { | |
"scheduler": scheduler, | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
"transformer": transformer, | |
"vae": vae, | |
} | |
def get_dummy_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device="cpu").manual_seed(seed) | |
inputs = { | |
"prompt": "A painting of a squirrel eating a burger", | |
"generator": generator, | |
"num_inference_steps": 2, | |
"guidance_scale": 5.0, | |
"output_type": "np", | |
"height": None, | |
"width": None, | |
} | |
return inputs | |
def test_aura_flow_prompt_embeds(self): | |
pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device) | |
inputs = self.get_dummy_inputs(torch_device) | |
output_with_prompt = pipe(**inputs).images[0] | |
inputs = self.get_dummy_inputs(torch_device) | |
prompt = inputs.pop("prompt") | |
do_classifier_free_guidance = inputs["guidance_scale"] > 1 | |
( | |
prompt_embeds, | |
prompt_attention_mask, | |
negative_prompt_embeds, | |
negative_prompt_attention_mask, | |
) = pipe.encode_prompt( | |
prompt, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
device=torch_device, | |
) | |
output_with_embeds = pipe( | |
prompt_embeds=prompt_embeds, | |
prompt_attention_mask=prompt_attention_mask, | |
negative_prompt_embeds=negative_prompt_embeds, | |
negative_prompt_attention_mask=negative_prompt_attention_mask, | |
**inputs, | |
).images[0] | |
max_diff = np.abs(output_with_prompt - output_with_embeds).max() | |
assert max_diff < 1e-4 | |
def test_attention_slicing_forward_pass(self): | |
# Attention slicing needs to implemented differently for this because how single DiT and MMDiT | |
# blocks interfere with each other. | |
return | |
def test_fused_qkv_projections(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
image = pipe(**inputs).images | |
original_image_slice = image[0, -3:, -3:, -1] | |
# TODO (sayakpaul): will refactor this once `fuse_qkv_projections()` has been added | |
# to the pipeline level. | |
pipe.transformer.fuse_qkv_projections() | |
assert check_qkv_fusion_processors_exist( | |
pipe.transformer | |
), "Something wrong with the fused attention processors. Expected all the attention processors to be fused." | |
assert check_qkv_fusion_matches_attn_procs_length( | |
pipe.transformer, pipe.transformer.original_attn_processors | |
), "Something wrong with the attention processors concerning the fused QKV projections." | |
inputs = self.get_dummy_inputs(device) | |
image = pipe(**inputs).images | |
image_slice_fused = image[0, -3:, -3:, -1] | |
pipe.transformer.unfuse_qkv_projections() | |
inputs = self.get_dummy_inputs(device) | |
image = pipe(**inputs).images | |
image_slice_disabled = image[0, -3:, -3:, -1] | |
assert np.allclose( | |
original_image_slice, image_slice_fused, atol=1e-3, rtol=1e-3 | |
), "Fusion of QKV projections shouldn't affect the outputs." | |
assert np.allclose( | |
image_slice_fused, image_slice_disabled, atol=1e-3, rtol=1e-3 | |
), "Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled." | |
assert np.allclose( | |
original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2 | |
), "Original outputs should match when fused QKV projections are disabled." | |
def test_xformers_attention_forwardGenerator_pass(self): | |
pass | |