|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer |
|
|
|
from diffusers import AmusedPipeline, AmusedScheduler, UVit2DModel, VQModel |
|
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device |
|
|
|
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS |
|
from ..test_pipelines_common import PipelineTesterMixin |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class AmusedPipelineFastTests(PipelineTesterMixin, unittest.TestCase): |
|
pipeline_class = AmusedPipeline |
|
params = TEXT_TO_IMAGE_PARAMS | {"encoder_hidden_states", "negative_encoder_hidden_states"} |
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS |
|
|
|
def get_dummy_components(self): |
|
torch.manual_seed(0) |
|
transformer = UVit2DModel( |
|
hidden_size=8, |
|
use_bias=False, |
|
hidden_dropout=0.0, |
|
cond_embed_dim=8, |
|
micro_cond_encode_dim=2, |
|
micro_cond_embed_dim=10, |
|
encoder_hidden_size=8, |
|
vocab_size=32, |
|
codebook_size=8, |
|
in_channels=8, |
|
block_out_channels=8, |
|
num_res_blocks=1, |
|
downsample=True, |
|
upsample=True, |
|
block_num_heads=1, |
|
num_hidden_layers=1, |
|
num_attention_heads=1, |
|
attention_dropout=0.0, |
|
intermediate_size=8, |
|
layer_norm_eps=1e-06, |
|
ln_elementwise_affine=True, |
|
) |
|
scheduler = AmusedScheduler(mask_token_id=31) |
|
torch.manual_seed(0) |
|
vqvae = VQModel( |
|
act_fn="silu", |
|
block_out_channels=[8], |
|
down_block_types=[ |
|
"DownEncoderBlock2D", |
|
], |
|
in_channels=3, |
|
latent_channels=8, |
|
layers_per_block=1, |
|
norm_num_groups=8, |
|
num_vq_embeddings=8, |
|
out_channels=3, |
|
sample_size=8, |
|
up_block_types=[ |
|
"UpDecoderBlock2D", |
|
], |
|
mid_block_add_attention=False, |
|
lookup_from_codebook=True, |
|
) |
|
torch.manual_seed(0) |
|
text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=8, |
|
intermediate_size=8, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=1, |
|
num_hidden_layers=1, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
projection_dim=8, |
|
) |
|
text_encoder = CLIPTextModelWithProjection(text_encoder_config) |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
components = { |
|
"transformer": transformer, |
|
"scheduler": scheduler, |
|
"vqvae": vqvae, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
} |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"output_type": "np", |
|
"height": 4, |
|
"width": 4, |
|
} |
|
return inputs |
|
|
|
def test_inference_batch_consistent(self, batch_sizes=[2]): |
|
self._test_inference_batch_consistent(batch_sizes=batch_sizes, batch_generator=False) |
|
|
|
@unittest.skip("aMUSEd does not support lists of generators") |
|
def test_inference_batch_single_identical(self): |
|
... |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class AmusedPipelineSlowTests(unittest.TestCase): |
|
def test_amused_256(self): |
|
pipe = AmusedPipeline.from_pretrained("amused/amused-256") |
|
pipe.to(torch_device) |
|
|
|
image = pipe("dog", generator=torch.Generator().manual_seed(0), num_inference_steps=2, output_type="np").images |
|
|
|
image_slice = image[0, -3:, -3:, -1].flatten() |
|
|
|
assert image.shape == (1, 256, 256, 3) |
|
expected_slice = np.array([0.4011, 0.3992, 0.3790, 0.3856, 0.3772, 0.3711, 0.3919, 0.3850, 0.3625]) |
|
assert np.abs(image_slice - expected_slice).max() < 3e-3 |
|
|
|
def test_amused_256_fp16(self): |
|
pipe = AmusedPipeline.from_pretrained("amused/amused-256", variant="fp16", torch_dtype=torch.float16) |
|
pipe.to(torch_device) |
|
|
|
image = pipe("dog", generator=torch.Generator().manual_seed(0), num_inference_steps=2, output_type="np").images |
|
|
|
image_slice = image[0, -3:, -3:, -1].flatten() |
|
|
|
assert image.shape == (1, 256, 256, 3) |
|
expected_slice = np.array([0.0554, 0.05129, 0.0344, 0.0452, 0.0476, 0.0271, 0.0495, 0.0527, 0.0158]) |
|
assert np.abs(image_slice - expected_slice).max() < 7e-3 |
|
|
|
def test_amused_512(self): |
|
pipe = AmusedPipeline.from_pretrained("amused/amused-512") |
|
pipe.to(torch_device) |
|
|
|
image = pipe("dog", generator=torch.Generator().manual_seed(0), num_inference_steps=2, output_type="np").images |
|
|
|
image_slice = image[0, -3:, -3:, -1].flatten() |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.9960, 0.9960, 0.9946, 0.9980, 0.9947, 0.9932, 0.9960, 0.9961, 0.9947]) |
|
assert np.abs(image_slice - expected_slice).max() < 3e-3 |
|
|
|
def test_amused_512_fp16(self): |
|
pipe = AmusedPipeline.from_pretrained("amused/amused-512", variant="fp16", torch_dtype=torch.float16) |
|
pipe.to(torch_device) |
|
|
|
image = pipe("dog", generator=torch.Generator().manual_seed(0), num_inference_steps=2, output_type="np").images |
|
|
|
image_slice = image[0, -3:, -3:, -1].flatten() |
|
|
|
assert image.shape == (1, 512, 512, 3) |
|
expected_slice = np.array([0.9983, 1.0, 1.0, 1.0, 1.0, 0.9989, 0.9994, 0.9976, 0.9977]) |
|
assert np.abs(image_slice - expected_slice).max() < 3e-3 |
|
|