|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import copy |
|
import gc |
|
import os |
|
import tempfile |
|
import unittest |
|
from collections import OrderedDict |
|
|
|
import torch |
|
from huggingface_hub import snapshot_download |
|
from parameterized import parameterized |
|
from pytest import mark |
|
|
|
from diffusers import UNet2DConditionModel |
|
from diffusers.models.attention_processor import ( |
|
CustomDiffusionAttnProcessor, |
|
IPAdapterAttnProcessor, |
|
IPAdapterAttnProcessor2_0, |
|
) |
|
from diffusers.models.embeddings import ImageProjection, IPAdapterFaceIDImageProjection, IPAdapterPlusImageProjection |
|
from diffusers.utils import logging |
|
from diffusers.utils.import_utils import is_xformers_available |
|
from diffusers.utils.testing_utils import ( |
|
backend_empty_cache, |
|
enable_full_determinism, |
|
floats_tensor, |
|
is_peft_available, |
|
load_hf_numpy, |
|
require_peft_backend, |
|
require_torch_accelerator, |
|
require_torch_accelerator_with_fp16, |
|
require_torch_accelerator_with_training, |
|
require_torch_gpu, |
|
skip_mps, |
|
slow, |
|
torch_all_close, |
|
torch_device, |
|
) |
|
|
|
from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin |
|
|
|
|
|
if is_peft_available(): |
|
from peft import LoraConfig |
|
from peft.tuners.tuners_utils import BaseTunerLayer |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
enable_full_determinism() |
|
|
|
|
|
def get_unet_lora_config(): |
|
rank = 4 |
|
unet_lora_config = LoraConfig( |
|
r=rank, |
|
lora_alpha=rank, |
|
target_modules=["to_q", "to_k", "to_v", "to_out.0"], |
|
init_lora_weights=False, |
|
use_dora=False, |
|
) |
|
return unet_lora_config |
|
|
|
|
|
def check_if_lora_correctly_set(model) -> bool: |
|
""" |
|
Checks if the LoRA layers are correctly set with peft |
|
""" |
|
for module in model.modules(): |
|
if isinstance(module, BaseTunerLayer): |
|
return True |
|
return False |
|
|
|
|
|
def create_ip_adapter_state_dict(model): |
|
|
|
ip_cross_attn_state_dict = {} |
|
key_id = 1 |
|
|
|
for name in model.attn_processors.keys(): |
|
cross_attention_dim = ( |
|
None if name.endswith("attn1.processor") or "motion_module" in name else model.config.cross_attention_dim |
|
) |
|
|
|
if name.startswith("mid_block"): |
|
hidden_size = model.config.block_out_channels[-1] |
|
elif name.startswith("up_blocks"): |
|
block_id = int(name[len("up_blocks.")]) |
|
hidden_size = list(reversed(model.config.block_out_channels))[block_id] |
|
elif name.startswith("down_blocks"): |
|
block_id = int(name[len("down_blocks.")]) |
|
hidden_size = model.config.block_out_channels[block_id] |
|
|
|
if cross_attention_dim is not None: |
|
sd = IPAdapterAttnProcessor( |
|
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0 |
|
).state_dict() |
|
ip_cross_attn_state_dict.update( |
|
{ |
|
f"{key_id}.to_k_ip.weight": sd["to_k_ip.0.weight"], |
|
f"{key_id}.to_v_ip.weight": sd["to_v_ip.0.weight"], |
|
} |
|
) |
|
|
|
key_id += 2 |
|
|
|
|
|
cross_attention_dim = model.config["cross_attention_dim"] |
|
image_projection = ImageProjection( |
|
cross_attention_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, num_image_text_embeds=4 |
|
) |
|
|
|
ip_image_projection_state_dict = {} |
|
sd = image_projection.state_dict() |
|
ip_image_projection_state_dict.update( |
|
{ |
|
"proj.weight": sd["image_embeds.weight"], |
|
"proj.bias": sd["image_embeds.bias"], |
|
"norm.weight": sd["norm.weight"], |
|
"norm.bias": sd["norm.bias"], |
|
} |
|
) |
|
|
|
del sd |
|
ip_state_dict = {} |
|
ip_state_dict.update({"image_proj": ip_image_projection_state_dict, "ip_adapter": ip_cross_attn_state_dict}) |
|
return ip_state_dict |
|
|
|
|
|
def create_ip_adapter_plus_state_dict(model): |
|
|
|
ip_cross_attn_state_dict = {} |
|
key_id = 1 |
|
|
|
for name in model.attn_processors.keys(): |
|
cross_attention_dim = None if name.endswith("attn1.processor") else model.config.cross_attention_dim |
|
if name.startswith("mid_block"): |
|
hidden_size = model.config.block_out_channels[-1] |
|
elif name.startswith("up_blocks"): |
|
block_id = int(name[len("up_blocks.")]) |
|
hidden_size = list(reversed(model.config.block_out_channels))[block_id] |
|
elif name.startswith("down_blocks"): |
|
block_id = int(name[len("down_blocks.")]) |
|
hidden_size = model.config.block_out_channels[block_id] |
|
if cross_attention_dim is not None: |
|
sd = IPAdapterAttnProcessor( |
|
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0 |
|
).state_dict() |
|
ip_cross_attn_state_dict.update( |
|
{ |
|
f"{key_id}.to_k_ip.weight": sd["to_k_ip.0.weight"], |
|
f"{key_id}.to_v_ip.weight": sd["to_v_ip.0.weight"], |
|
} |
|
) |
|
|
|
key_id += 2 |
|
|
|
|
|
cross_attention_dim = model.config["cross_attention_dim"] |
|
image_projection = IPAdapterPlusImageProjection( |
|
embed_dims=cross_attention_dim, output_dims=cross_attention_dim, dim_head=32, heads=2, num_queries=4 |
|
) |
|
|
|
ip_image_projection_state_dict = OrderedDict() |
|
keys = [k for k in image_projection.state_dict() if "layers." in k] |
|
print(keys) |
|
for k, v in image_projection.state_dict().items(): |
|
if "2.to" in k: |
|
k = k.replace("2.to", "0.to") |
|
elif "layers.0.ln0" in k: |
|
k = k.replace("layers.0.ln0", "layers.0.0.norm1") |
|
elif "layers.0.ln1" in k: |
|
k = k.replace("layers.0.ln1", "layers.0.0.norm2") |
|
elif "layers.1.ln0" in k: |
|
k = k.replace("layers.1.ln0", "layers.1.0.norm1") |
|
elif "layers.1.ln1" in k: |
|
k = k.replace("layers.1.ln1", "layers.1.0.norm2") |
|
elif "layers.2.ln0" in k: |
|
k = k.replace("layers.2.ln0", "layers.2.0.norm1") |
|
elif "layers.2.ln1" in k: |
|
k = k.replace("layers.2.ln1", "layers.2.0.norm2") |
|
elif "layers.3.ln0" in k: |
|
k = k.replace("layers.3.ln0", "layers.3.0.norm1") |
|
elif "layers.3.ln1" in k: |
|
k = k.replace("layers.3.ln1", "layers.3.0.norm2") |
|
elif "to_q" in k: |
|
parts = k.split(".") |
|
parts[2] = "attn" |
|
k = ".".join(parts) |
|
elif "to_out.0" in k: |
|
parts = k.split(".") |
|
parts[2] = "attn" |
|
k = ".".join(parts) |
|
k = k.replace("to_out.0", "to_out") |
|
else: |
|
k = k.replace("0.ff.0", "0.1.0") |
|
k = k.replace("0.ff.1.net.0.proj", "0.1.1") |
|
k = k.replace("0.ff.1.net.2", "0.1.3") |
|
|
|
k = k.replace("1.ff.0", "1.1.0") |
|
k = k.replace("1.ff.1.net.0.proj", "1.1.1") |
|
k = k.replace("1.ff.1.net.2", "1.1.3") |
|
|
|
k = k.replace("2.ff.0", "2.1.0") |
|
k = k.replace("2.ff.1.net.0.proj", "2.1.1") |
|
k = k.replace("2.ff.1.net.2", "2.1.3") |
|
|
|
k = k.replace("3.ff.0", "3.1.0") |
|
k = k.replace("3.ff.1.net.0.proj", "3.1.1") |
|
k = k.replace("3.ff.1.net.2", "3.1.3") |
|
|
|
|
|
|
|
|
|
|
|
if "to_k" in k: |
|
parts = k.split(".") |
|
parts[2] = "attn" |
|
k = ".".join(parts) |
|
ip_image_projection_state_dict[k.replace("to_k", "to_kv")] = torch.cat([v, v], dim=0) |
|
elif "to_v" in k: |
|
continue |
|
else: |
|
ip_image_projection_state_dict[k] = v |
|
|
|
ip_state_dict = {} |
|
ip_state_dict.update({"image_proj": ip_image_projection_state_dict, "ip_adapter": ip_cross_attn_state_dict}) |
|
return ip_state_dict |
|
|
|
|
|
def create_ip_adapter_faceid_state_dict(model): |
|
|
|
|
|
ip_cross_attn_state_dict = {} |
|
key_id = 1 |
|
|
|
for name in model.attn_processors.keys(): |
|
cross_attention_dim = ( |
|
None if name.endswith("attn1.processor") or "motion_module" in name else model.config.cross_attention_dim |
|
) |
|
|
|
if name.startswith("mid_block"): |
|
hidden_size = model.config.block_out_channels[-1] |
|
elif name.startswith("up_blocks"): |
|
block_id = int(name[len("up_blocks.")]) |
|
hidden_size = list(reversed(model.config.block_out_channels))[block_id] |
|
elif name.startswith("down_blocks"): |
|
block_id = int(name[len("down_blocks.")]) |
|
hidden_size = model.config.block_out_channels[block_id] |
|
|
|
if cross_attention_dim is not None: |
|
sd = IPAdapterAttnProcessor( |
|
hidden_size=hidden_size, cross_attention_dim=cross_attention_dim, scale=1.0 |
|
).state_dict() |
|
ip_cross_attn_state_dict.update( |
|
{ |
|
f"{key_id}.to_k_ip.weight": sd["to_k_ip.0.weight"], |
|
f"{key_id}.to_v_ip.weight": sd["to_v_ip.0.weight"], |
|
} |
|
) |
|
|
|
key_id += 2 |
|
|
|
|
|
cross_attention_dim = model.config["cross_attention_dim"] |
|
image_projection = IPAdapterFaceIDImageProjection( |
|
cross_attention_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, mult=2, num_tokens=4 |
|
) |
|
|
|
ip_image_projection_state_dict = {} |
|
sd = image_projection.state_dict() |
|
ip_image_projection_state_dict.update( |
|
{ |
|
"proj.0.weight": sd["ff.net.0.proj.weight"], |
|
"proj.0.bias": sd["ff.net.0.proj.bias"], |
|
"proj.2.weight": sd["ff.net.2.weight"], |
|
"proj.2.bias": sd["ff.net.2.bias"], |
|
"norm.weight": sd["norm.weight"], |
|
"norm.bias": sd["norm.bias"], |
|
} |
|
) |
|
|
|
del sd |
|
ip_state_dict = {} |
|
ip_state_dict.update({"image_proj": ip_image_projection_state_dict, "ip_adapter": ip_cross_attn_state_dict}) |
|
return ip_state_dict |
|
|
|
|
|
def create_custom_diffusion_layers(model, mock_weights: bool = True): |
|
train_kv = True |
|
train_q_out = True |
|
custom_diffusion_attn_procs = {} |
|
|
|
st = model.state_dict() |
|
for name, _ in model.attn_processors.items(): |
|
cross_attention_dim = None if name.endswith("attn1.processor") else model.config.cross_attention_dim |
|
if name.startswith("mid_block"): |
|
hidden_size = model.config.block_out_channels[-1] |
|
elif name.startswith("up_blocks"): |
|
block_id = int(name[len("up_blocks.")]) |
|
hidden_size = list(reversed(model.config.block_out_channels))[block_id] |
|
elif name.startswith("down_blocks"): |
|
block_id = int(name[len("down_blocks.")]) |
|
hidden_size = model.config.block_out_channels[block_id] |
|
layer_name = name.split(".processor")[0] |
|
weights = { |
|
"to_k_custom_diffusion.weight": st[layer_name + ".to_k.weight"], |
|
"to_v_custom_diffusion.weight": st[layer_name + ".to_v.weight"], |
|
} |
|
if train_q_out: |
|
weights["to_q_custom_diffusion.weight"] = st[layer_name + ".to_q.weight"] |
|
weights["to_out_custom_diffusion.0.weight"] = st[layer_name + ".to_out.0.weight"] |
|
weights["to_out_custom_diffusion.0.bias"] = st[layer_name + ".to_out.0.bias"] |
|
if cross_attention_dim is not None: |
|
custom_diffusion_attn_procs[name] = CustomDiffusionAttnProcessor( |
|
train_kv=train_kv, |
|
train_q_out=train_q_out, |
|
hidden_size=hidden_size, |
|
cross_attention_dim=cross_attention_dim, |
|
).to(model.device) |
|
custom_diffusion_attn_procs[name].load_state_dict(weights) |
|
if mock_weights: |
|
|
|
with torch.no_grad(): |
|
custom_diffusion_attn_procs[name].to_k_custom_diffusion.weight += 1 |
|
custom_diffusion_attn_procs[name].to_v_custom_diffusion.weight += 1 |
|
else: |
|
custom_diffusion_attn_procs[name] = CustomDiffusionAttnProcessor( |
|
train_kv=False, |
|
train_q_out=False, |
|
hidden_size=hidden_size, |
|
cross_attention_dim=cross_attention_dim, |
|
) |
|
del st |
|
return custom_diffusion_attn_procs |
|
|
|
|
|
class UNet2DConditionModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): |
|
model_class = UNet2DConditionModel |
|
main_input_name = "sample" |
|
|
|
model_split_percents = [0.5, 0.3, 0.4] |
|
|
|
@property |
|
def dummy_input(self): |
|
batch_size = 4 |
|
num_channels = 4 |
|
sizes = (16, 16) |
|
|
|
noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) |
|
time_step = torch.tensor([10]).to(torch_device) |
|
encoder_hidden_states = floats_tensor((batch_size, 4, 8)).to(torch_device) |
|
|
|
return {"sample": noise, "timestep": time_step, "encoder_hidden_states": encoder_hidden_states} |
|
|
|
@property |
|
def input_shape(self): |
|
return (4, 16, 16) |
|
|
|
@property |
|
def output_shape(self): |
|
return (4, 16, 16) |
|
|
|
def prepare_init_args_and_inputs_for_common(self): |
|
init_dict = { |
|
"block_out_channels": (4, 8), |
|
"norm_num_groups": 4, |
|
"down_block_types": ("CrossAttnDownBlock2D", "DownBlock2D"), |
|
"up_block_types": ("UpBlock2D", "CrossAttnUpBlock2D"), |
|
"cross_attention_dim": 8, |
|
"attention_head_dim": 2, |
|
"out_channels": 4, |
|
"in_channels": 4, |
|
"layers_per_block": 1, |
|
"sample_size": 16, |
|
} |
|
inputs_dict = self.dummy_input |
|
return init_dict, inputs_dict |
|
|
|
@unittest.skipIf( |
|
torch_device != "cuda" or not is_xformers_available(), |
|
reason="XFormers attention is only available with CUDA and `xformers` installed", |
|
) |
|
def test_xformers_enable_works(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
model = self.model_class(**init_dict) |
|
|
|
model.enable_xformers_memory_efficient_attention() |
|
|
|
assert ( |
|
model.mid_block.attentions[0].transformer_blocks[0].attn1.processor.__class__.__name__ |
|
== "XFormersAttnProcessor" |
|
), "xformers is not enabled" |
|
|
|
@require_torch_accelerator_with_training |
|
def test_gradient_checkpointing(self): |
|
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
|
|
assert not model.is_gradient_checkpointing and model.training |
|
|
|
out = model(**inputs_dict).sample |
|
|
|
|
|
model.zero_grad() |
|
|
|
labels = torch.randn_like(out) |
|
loss = (out - labels).mean() |
|
loss.backward() |
|
|
|
|
|
model_2 = self.model_class(**init_dict) |
|
|
|
model_2.load_state_dict(model.state_dict()) |
|
model_2.to(torch_device) |
|
model_2.enable_gradient_checkpointing() |
|
|
|
assert model_2.is_gradient_checkpointing and model_2.training |
|
|
|
out_2 = model_2(**inputs_dict).sample |
|
|
|
|
|
model_2.zero_grad() |
|
loss_2 = (out_2 - labels).mean() |
|
loss_2.backward() |
|
|
|
|
|
self.assertTrue((loss - loss_2).abs() < 1e-5) |
|
named_params = dict(model.named_parameters()) |
|
named_params_2 = dict(model_2.named_parameters()) |
|
for name, param in named_params.items(): |
|
self.assertTrue(torch_all_close(param.grad.data, named_params_2[name].grad.data, atol=5e-5)) |
|
|
|
def test_model_with_attention_head_dim_tuple(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
init_dict["block_out_channels"] = (16, 32) |
|
init_dict["attention_head_dim"] = (8, 16) |
|
|
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
with torch.no_grad(): |
|
output = model(**inputs_dict) |
|
|
|
if isinstance(output, dict): |
|
output = output.sample |
|
|
|
self.assertIsNotNone(output) |
|
expected_shape = inputs_dict["sample"].shape |
|
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") |
|
|
|
def test_model_with_use_linear_projection(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
init_dict["use_linear_projection"] = True |
|
|
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
with torch.no_grad(): |
|
output = model(**inputs_dict) |
|
|
|
if isinstance(output, dict): |
|
output = output.sample |
|
|
|
self.assertIsNotNone(output) |
|
expected_shape = inputs_dict["sample"].shape |
|
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") |
|
|
|
def test_model_with_cross_attention_dim_tuple(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
init_dict["cross_attention_dim"] = (8, 8) |
|
|
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
with torch.no_grad(): |
|
output = model(**inputs_dict) |
|
|
|
if isinstance(output, dict): |
|
output = output.sample |
|
|
|
self.assertIsNotNone(output) |
|
expected_shape = inputs_dict["sample"].shape |
|
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") |
|
|
|
def test_model_with_simple_projection(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
batch_size, _, _, sample_size = inputs_dict["sample"].shape |
|
|
|
init_dict["class_embed_type"] = "simple_projection" |
|
init_dict["projection_class_embeddings_input_dim"] = sample_size |
|
|
|
inputs_dict["class_labels"] = floats_tensor((batch_size, sample_size)).to(torch_device) |
|
|
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
with torch.no_grad(): |
|
output = model(**inputs_dict) |
|
|
|
if isinstance(output, dict): |
|
output = output.sample |
|
|
|
self.assertIsNotNone(output) |
|
expected_shape = inputs_dict["sample"].shape |
|
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") |
|
|
|
def test_model_with_class_embeddings_concat(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
batch_size, _, _, sample_size = inputs_dict["sample"].shape |
|
|
|
init_dict["class_embed_type"] = "simple_projection" |
|
init_dict["projection_class_embeddings_input_dim"] = sample_size |
|
init_dict["class_embeddings_concat"] = True |
|
|
|
inputs_dict["class_labels"] = floats_tensor((batch_size, sample_size)).to(torch_device) |
|
|
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
with torch.no_grad(): |
|
output = model(**inputs_dict) |
|
|
|
if isinstance(output, dict): |
|
output = output.sample |
|
|
|
self.assertIsNotNone(output) |
|
expected_shape = inputs_dict["sample"].shape |
|
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") |
|
|
|
def test_model_attention_slicing(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
init_dict["block_out_channels"] = (16, 32) |
|
init_dict["attention_head_dim"] = (8, 16) |
|
|
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
model.set_attention_slice("auto") |
|
with torch.no_grad(): |
|
output = model(**inputs_dict) |
|
assert output is not None |
|
|
|
model.set_attention_slice("max") |
|
with torch.no_grad(): |
|
output = model(**inputs_dict) |
|
assert output is not None |
|
|
|
model.set_attention_slice(2) |
|
with torch.no_grad(): |
|
output = model(**inputs_dict) |
|
assert output is not None |
|
|
|
def test_model_sliceable_head_dim(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
init_dict["block_out_channels"] = (16, 32) |
|
init_dict["attention_head_dim"] = (8, 16) |
|
|
|
model = self.model_class(**init_dict) |
|
|
|
def check_sliceable_dim_attr(module: torch.nn.Module): |
|
if hasattr(module, "set_attention_slice"): |
|
assert isinstance(module.sliceable_head_dim, int) |
|
|
|
for child in module.children(): |
|
check_sliceable_dim_attr(child) |
|
|
|
|
|
for module in model.children(): |
|
check_sliceable_dim_attr(module) |
|
|
|
def test_gradient_checkpointing_is_applied(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
init_dict["block_out_channels"] = (16, 32) |
|
init_dict["attention_head_dim"] = (8, 16) |
|
|
|
model_class_copy = copy.copy(self.model_class) |
|
|
|
modules_with_gc_enabled = {} |
|
|
|
|
|
|
|
|
|
|
|
|
|
def _set_gradient_checkpointing_new(self, module, value=False): |
|
if hasattr(module, "gradient_checkpointing"): |
|
module.gradient_checkpointing = value |
|
modules_with_gc_enabled[module.__class__.__name__] = True |
|
|
|
model_class_copy._set_gradient_checkpointing = _set_gradient_checkpointing_new |
|
|
|
model = model_class_copy(**init_dict) |
|
model.enable_gradient_checkpointing() |
|
|
|
EXPECTED_SET = { |
|
"CrossAttnUpBlock2D", |
|
"CrossAttnDownBlock2D", |
|
"UNetMidBlock2DCrossAttn", |
|
"UpBlock2D", |
|
"Transformer2DModel", |
|
"DownBlock2D", |
|
} |
|
|
|
assert set(modules_with_gc_enabled.keys()) == EXPECTED_SET |
|
assert all(modules_with_gc_enabled.values()), "All modules should be enabled" |
|
|
|
def test_special_attn_proc(self): |
|
class AttnEasyProc(torch.nn.Module): |
|
def __init__(self, num): |
|
super().__init__() |
|
self.weight = torch.nn.Parameter(torch.tensor(num)) |
|
self.is_run = False |
|
self.number = 0 |
|
self.counter = 0 |
|
|
|
def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, number=None): |
|
batch_size, sequence_length, _ = hidden_states.shape |
|
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) |
|
|
|
query = attn.to_q(hidden_states) |
|
|
|
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states |
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
query = attn.head_to_batch_dim(query) |
|
key = attn.head_to_batch_dim(key) |
|
value = attn.head_to_batch_dim(value) |
|
|
|
attention_probs = attn.get_attention_scores(query, key, attention_mask) |
|
hidden_states = torch.bmm(attention_probs, value) |
|
hidden_states = attn.batch_to_head_dim(hidden_states) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
hidden_states += self.weight |
|
|
|
self.is_run = True |
|
self.counter += 1 |
|
self.number = number |
|
|
|
return hidden_states |
|
|
|
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
init_dict["block_out_channels"] = (16, 32) |
|
init_dict["attention_head_dim"] = (8, 16) |
|
|
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
|
|
processor = AttnEasyProc(5.0) |
|
|
|
model.set_attn_processor(processor) |
|
model(**inputs_dict, cross_attention_kwargs={"number": 123}).sample |
|
|
|
assert processor.counter == 8 |
|
assert processor.is_run |
|
assert processor.number == 123 |
|
|
|
@parameterized.expand( |
|
[ |
|
|
|
[torch.bool], |
|
[torch.long], |
|
[torch.float], |
|
|
|
] |
|
) |
|
def test_model_xattn_mask(self, mask_dtype): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
model = self.model_class(**{**init_dict, "attention_head_dim": (8, 16), "block_out_channels": (16, 32)}) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
cond = inputs_dict["encoder_hidden_states"] |
|
with torch.no_grad(): |
|
full_cond_out = model(**inputs_dict).sample |
|
assert full_cond_out is not None |
|
|
|
keepall_mask = torch.ones(*cond.shape[:-1], device=cond.device, dtype=mask_dtype) |
|
full_cond_keepallmask_out = model(**{**inputs_dict, "encoder_attention_mask": keepall_mask}).sample |
|
assert full_cond_keepallmask_out.allclose( |
|
full_cond_out, rtol=1e-05, atol=1e-05 |
|
), "a 'keep all' mask should give the same result as no mask" |
|
|
|
trunc_cond = cond[:, :-1, :] |
|
trunc_cond_out = model(**{**inputs_dict, "encoder_hidden_states": trunc_cond}).sample |
|
assert not trunc_cond_out.allclose( |
|
full_cond_out, rtol=1e-05, atol=1e-05 |
|
), "discarding the last token from our cond should change the result" |
|
|
|
batch, tokens, _ = cond.shape |
|
mask_last = (torch.arange(tokens) < tokens - 1).expand(batch, -1).to(cond.device, mask_dtype) |
|
masked_cond_out = model(**{**inputs_dict, "encoder_attention_mask": mask_last}).sample |
|
assert masked_cond_out.allclose( |
|
trunc_cond_out, rtol=1e-05, atol=1e-05 |
|
), "masking the last token from our cond should be equivalent to truncating that token out of the condition" |
|
|
|
|
|
|
|
|
|
|
|
@mark.skip( |
|
reason="we currently pad mask by target_length tokens (what unclip needs), whereas stable-diffusion's cross-attn needs to instead pad by remaining_length." |
|
) |
|
def test_model_xattn_padding(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
model = self.model_class(**{**init_dict, "attention_head_dim": (8, 16)}) |
|
model.to(torch_device) |
|
model.eval() |
|
|
|
cond = inputs_dict["encoder_hidden_states"] |
|
with torch.no_grad(): |
|
full_cond_out = model(**inputs_dict).sample |
|
assert full_cond_out is not None |
|
|
|
batch, tokens, _ = cond.shape |
|
keeplast_mask = (torch.arange(tokens) == tokens - 1).expand(batch, -1).to(cond.device, torch.bool) |
|
keeplast_out = model(**{**inputs_dict, "encoder_attention_mask": keeplast_mask}).sample |
|
assert not keeplast_out.allclose(full_cond_out), "a 'keep last token' mask should change the result" |
|
|
|
trunc_mask = torch.zeros(batch, tokens - 1, device=cond.device, dtype=torch.bool) |
|
trunc_mask_out = model(**{**inputs_dict, "encoder_attention_mask": trunc_mask}).sample |
|
assert trunc_mask_out.allclose( |
|
keeplast_out |
|
), "a mask with fewer tokens than condition, will be padded with 'keep' tokens. a 'discard-all' mask missing the final token is thus equivalent to a 'keep last' mask." |
|
|
|
def test_custom_diffusion_processors(self): |
|
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
init_dict["block_out_channels"] = (16, 32) |
|
init_dict["attention_head_dim"] = (8, 16) |
|
|
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
|
|
with torch.no_grad(): |
|
sample1 = model(**inputs_dict).sample |
|
|
|
custom_diffusion_attn_procs = create_custom_diffusion_layers(model, mock_weights=False) |
|
|
|
|
|
model.set_attn_processor(custom_diffusion_attn_procs) |
|
model.to(torch_device) |
|
|
|
|
|
model.set_attn_processor(model.attn_processors) |
|
|
|
with torch.no_grad(): |
|
sample2 = model(**inputs_dict).sample |
|
|
|
assert (sample1 - sample2).abs().max() < 3e-3 |
|
|
|
def test_custom_diffusion_save_load(self): |
|
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
init_dict["block_out_channels"] = (16, 32) |
|
init_dict["attention_head_dim"] = (8, 16) |
|
|
|
torch.manual_seed(0) |
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
|
|
with torch.no_grad(): |
|
old_sample = model(**inputs_dict).sample |
|
|
|
custom_diffusion_attn_procs = create_custom_diffusion_layers(model, mock_weights=False) |
|
model.set_attn_processor(custom_diffusion_attn_procs) |
|
|
|
with torch.no_grad(): |
|
sample = model(**inputs_dict).sample |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
model.save_attn_procs(tmpdirname, safe_serialization=False) |
|
self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_custom_diffusion_weights.bin"))) |
|
torch.manual_seed(0) |
|
new_model = self.model_class(**init_dict) |
|
new_model.load_attn_procs(tmpdirname, weight_name="pytorch_custom_diffusion_weights.bin") |
|
new_model.to(torch_device) |
|
|
|
with torch.no_grad(): |
|
new_sample = new_model(**inputs_dict).sample |
|
|
|
assert (sample - new_sample).abs().max() < 1e-4 |
|
|
|
|
|
assert (sample - old_sample).abs().max() < 3e-3 |
|
|
|
@unittest.skipIf( |
|
torch_device != "cuda" or not is_xformers_available(), |
|
reason="XFormers attention is only available with CUDA and `xformers` installed", |
|
) |
|
def test_custom_diffusion_xformers_on_off(self): |
|
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
init_dict["block_out_channels"] = (16, 32) |
|
init_dict["attention_head_dim"] = (8, 16) |
|
|
|
torch.manual_seed(0) |
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
custom_diffusion_attn_procs = create_custom_diffusion_layers(model, mock_weights=False) |
|
model.set_attn_processor(custom_diffusion_attn_procs) |
|
|
|
|
|
with torch.no_grad(): |
|
sample = model(**inputs_dict).sample |
|
|
|
model.enable_xformers_memory_efficient_attention() |
|
on_sample = model(**inputs_dict).sample |
|
|
|
model.disable_xformers_memory_efficient_attention() |
|
off_sample = model(**inputs_dict).sample |
|
|
|
assert (sample - on_sample).abs().max() < 1e-4 |
|
assert (sample - off_sample).abs().max() < 1e-4 |
|
|
|
def test_pickle(self): |
|
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
init_dict["block_out_channels"] = (16, 32) |
|
init_dict["attention_head_dim"] = (8, 16) |
|
|
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
|
|
with torch.no_grad(): |
|
sample = model(**inputs_dict).sample |
|
|
|
sample_copy = copy.copy(sample) |
|
|
|
assert (sample - sample_copy).abs().max() < 1e-4 |
|
|
|
def test_asymmetrical_unet(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
init_dict["transformer_layers_per_block"] = [[3, 2], 1] |
|
init_dict["reverse_transformer_layers_per_block"] = [[3, 4], 1] |
|
|
|
torch.manual_seed(0) |
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
|
|
output = model(**inputs_dict).sample |
|
expected_shape = inputs_dict["sample"].shape |
|
|
|
|
|
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") |
|
|
|
def test_ip_adapter(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
init_dict["block_out_channels"] = (16, 32) |
|
init_dict["attention_head_dim"] = (8, 16) |
|
|
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
|
|
|
|
with torch.no_grad(): |
|
sample1 = model(**inputs_dict).sample |
|
|
|
|
|
batch_size = inputs_dict["encoder_hidden_states"].shape[0] |
|
|
|
image_embeds = floats_tensor((batch_size, 1, model.config.cross_attention_dim)).to(torch_device) |
|
inputs_dict["added_cond_kwargs"] = {"image_embeds": [image_embeds]} |
|
|
|
|
|
ip_adapter_1 = create_ip_adapter_state_dict(model) |
|
|
|
image_proj_state_dict_2 = {k: w + 1.0 for k, w in ip_adapter_1["image_proj"].items()} |
|
cross_attn_state_dict_2 = {k: w + 1.0 for k, w in ip_adapter_1["ip_adapter"].items()} |
|
ip_adapter_2 = {} |
|
ip_adapter_2.update({"image_proj": image_proj_state_dict_2, "ip_adapter": cross_attn_state_dict_2}) |
|
|
|
|
|
model._load_ip_adapter_weights([ip_adapter_1]) |
|
assert model.config.encoder_hid_dim_type == "ip_image_proj" |
|
assert model.encoder_hid_proj is not None |
|
assert model.down_blocks[0].attentions[0].transformer_blocks[0].attn2.processor.__class__.__name__ in ( |
|
"IPAdapterAttnProcessor", |
|
"IPAdapterAttnProcessor2_0", |
|
) |
|
with torch.no_grad(): |
|
sample2 = model(**inputs_dict).sample |
|
|
|
|
|
model._load_ip_adapter_weights([ip_adapter_2]) |
|
with torch.no_grad(): |
|
sample3 = model(**inputs_dict).sample |
|
|
|
|
|
model._load_ip_adapter_weights([ip_adapter_1]) |
|
with torch.no_grad(): |
|
sample4 = model(**inputs_dict).sample |
|
|
|
|
|
model._load_ip_adapter_weights([ip_adapter_1, ip_adapter_2]) |
|
|
|
for attn_processor in model.attn_processors.values(): |
|
if isinstance(attn_processor, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0)): |
|
attn_processor.scale = [1, 0] |
|
image_embeds_multi = image_embeds.repeat(1, 2, 1) |
|
inputs_dict["added_cond_kwargs"] = {"image_embeds": [image_embeds_multi, image_embeds_multi]} |
|
with torch.no_grad(): |
|
sample5 = model(**inputs_dict).sample |
|
|
|
|
|
image_embeds = image_embeds.squeeze(1) |
|
inputs_dict["added_cond_kwargs"] = {"image_embeds": image_embeds} |
|
|
|
model._load_ip_adapter_weights(ip_adapter_1) |
|
with torch.no_grad(): |
|
sample6 = model(**inputs_dict).sample |
|
|
|
assert not sample1.allclose(sample2, atol=1e-4, rtol=1e-4) |
|
assert not sample2.allclose(sample3, atol=1e-4, rtol=1e-4) |
|
assert sample2.allclose(sample4, atol=1e-4, rtol=1e-4) |
|
assert sample2.allclose(sample5, atol=1e-4, rtol=1e-4) |
|
assert sample2.allclose(sample6, atol=1e-4, rtol=1e-4) |
|
|
|
def test_ip_adapter_plus(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
|
|
init_dict["block_out_channels"] = (16, 32) |
|
init_dict["attention_head_dim"] = (8, 16) |
|
|
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
|
|
|
|
with torch.no_grad(): |
|
sample1 = model(**inputs_dict).sample |
|
|
|
|
|
batch_size = inputs_dict["encoder_hidden_states"].shape[0] |
|
|
|
image_embeds = floats_tensor((batch_size, 1, 1, model.config.cross_attention_dim)).to(torch_device) |
|
inputs_dict["added_cond_kwargs"] = {"image_embeds": [image_embeds]} |
|
|
|
|
|
ip_adapter_1 = create_ip_adapter_plus_state_dict(model) |
|
|
|
image_proj_state_dict_2 = {k: w + 1.0 for k, w in ip_adapter_1["image_proj"].items()} |
|
cross_attn_state_dict_2 = {k: w + 1.0 for k, w in ip_adapter_1["ip_adapter"].items()} |
|
ip_adapter_2 = {} |
|
ip_adapter_2.update({"image_proj": image_proj_state_dict_2, "ip_adapter": cross_attn_state_dict_2}) |
|
|
|
|
|
model._load_ip_adapter_weights([ip_adapter_1]) |
|
assert model.config.encoder_hid_dim_type == "ip_image_proj" |
|
assert model.encoder_hid_proj is not None |
|
assert model.down_blocks[0].attentions[0].transformer_blocks[0].attn2.processor.__class__.__name__ in ( |
|
"IPAdapterAttnProcessor", |
|
"IPAdapterAttnProcessor2_0", |
|
) |
|
with torch.no_grad(): |
|
sample2 = model(**inputs_dict).sample |
|
|
|
|
|
model._load_ip_adapter_weights([ip_adapter_2]) |
|
with torch.no_grad(): |
|
sample3 = model(**inputs_dict).sample |
|
|
|
|
|
model._load_ip_adapter_weights([ip_adapter_1]) |
|
with torch.no_grad(): |
|
sample4 = model(**inputs_dict).sample |
|
|
|
|
|
model._load_ip_adapter_weights([ip_adapter_1, ip_adapter_2]) |
|
|
|
for attn_processor in model.attn_processors.values(): |
|
if isinstance(attn_processor, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0)): |
|
attn_processor.scale = [1, 0] |
|
image_embeds_multi = image_embeds.repeat(1, 2, 1, 1) |
|
inputs_dict["added_cond_kwargs"] = {"image_embeds": [image_embeds_multi, image_embeds_multi]} |
|
with torch.no_grad(): |
|
sample5 = model(**inputs_dict).sample |
|
|
|
|
|
image_embeds = image_embeds[:,].squeeze(1) |
|
inputs_dict["added_cond_kwargs"] = {"image_embeds": image_embeds} |
|
|
|
model._load_ip_adapter_weights(ip_adapter_1) |
|
with torch.no_grad(): |
|
sample6 = model(**inputs_dict).sample |
|
|
|
assert not sample1.allclose(sample2, atol=1e-4, rtol=1e-4) |
|
assert not sample2.allclose(sample3, atol=1e-4, rtol=1e-4) |
|
assert sample2.allclose(sample4, atol=1e-4, rtol=1e-4) |
|
assert sample2.allclose(sample5, atol=1e-4, rtol=1e-4) |
|
assert sample2.allclose(sample6, atol=1e-4, rtol=1e-4) |
|
|
|
@require_torch_gpu |
|
def test_load_sharded_checkpoint_from_hub(self): |
|
_, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
loaded_model = self.model_class.from_pretrained("hf-internal-testing/unet2d-sharded-dummy") |
|
loaded_model = loaded_model.to(torch_device) |
|
new_output = loaded_model(**inputs_dict) |
|
|
|
assert loaded_model |
|
assert new_output.sample.shape == (4, 4, 16, 16) |
|
|
|
@require_torch_gpu |
|
def test_load_sharded_checkpoint_from_hub_subfolder(self): |
|
_, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
loaded_model = self.model_class.from_pretrained( |
|
"hf-internal-testing/unet2d-sharded-dummy-subfolder", subfolder="unet" |
|
) |
|
loaded_model = loaded_model.to(torch_device) |
|
new_output = loaded_model(**inputs_dict) |
|
|
|
assert loaded_model |
|
assert new_output.sample.shape == (4, 4, 16, 16) |
|
|
|
@require_torch_gpu |
|
def test_load_sharded_checkpoint_from_hub_local(self): |
|
_, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
ckpt_path = snapshot_download("hf-internal-testing/unet2d-sharded-dummy") |
|
loaded_model = self.model_class.from_pretrained(ckpt_path, local_files_only=True) |
|
loaded_model = loaded_model.to(torch_device) |
|
new_output = loaded_model(**inputs_dict) |
|
|
|
assert loaded_model |
|
assert new_output.sample.shape == (4, 4, 16, 16) |
|
|
|
@require_torch_gpu |
|
def test_load_sharded_checkpoint_from_hub_local_subfolder(self): |
|
_, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
ckpt_path = snapshot_download("hf-internal-testing/unet2d-sharded-dummy-subfolder") |
|
loaded_model = self.model_class.from_pretrained(ckpt_path, subfolder="unet", local_files_only=True) |
|
loaded_model = loaded_model.to(torch_device) |
|
new_output = loaded_model(**inputs_dict) |
|
|
|
assert loaded_model |
|
assert new_output.sample.shape == (4, 4, 16, 16) |
|
|
|
@require_torch_gpu |
|
def test_load_sharded_checkpoint_device_map_from_hub(self): |
|
_, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
loaded_model = self.model_class.from_pretrained("hf-internal-testing/unet2d-sharded-dummy", device_map="auto") |
|
new_output = loaded_model(**inputs_dict) |
|
|
|
assert loaded_model |
|
assert new_output.sample.shape == (4, 4, 16, 16) |
|
|
|
@require_torch_gpu |
|
def test_load_sharded_checkpoint_device_map_from_hub_subfolder(self): |
|
_, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
loaded_model = self.model_class.from_pretrained( |
|
"hf-internal-testing/unet2d-sharded-dummy-subfolder", subfolder="unet", device_map="auto" |
|
) |
|
new_output = loaded_model(**inputs_dict) |
|
|
|
assert loaded_model |
|
assert new_output.sample.shape == (4, 4, 16, 16) |
|
|
|
@require_torch_gpu |
|
def test_load_sharded_checkpoint_device_map_from_hub_local(self): |
|
_, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
ckpt_path = snapshot_download("hf-internal-testing/unet2d-sharded-dummy") |
|
loaded_model = self.model_class.from_pretrained(ckpt_path, local_files_only=True, device_map="auto") |
|
new_output = loaded_model(**inputs_dict) |
|
|
|
assert loaded_model |
|
assert new_output.sample.shape == (4, 4, 16, 16) |
|
|
|
@require_torch_gpu |
|
def test_load_sharded_checkpoint_device_map_from_hub_local_subfolder(self): |
|
_, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
ckpt_path = snapshot_download("hf-internal-testing/unet2d-sharded-dummy-subfolder") |
|
loaded_model = self.model_class.from_pretrained( |
|
ckpt_path, local_files_only=True, subfolder="unet", device_map="auto" |
|
) |
|
new_output = loaded_model(**inputs_dict) |
|
|
|
assert loaded_model |
|
assert new_output.sample.shape == (4, 4, 16, 16) |
|
|
|
@require_torch_gpu |
|
def test_load_sharded_checkpoint_with_variant_from_hub(self): |
|
_, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
loaded_model = self.model_class.from_pretrained( |
|
"hf-internal-testing/unet2d-sharded-with-variant-dummy", variant="fp16" |
|
) |
|
loaded_model = loaded_model.to(torch_device) |
|
new_output = loaded_model(**inputs_dict) |
|
|
|
assert loaded_model |
|
assert new_output.sample.shape == (4, 4, 16, 16) |
|
|
|
@require_peft_backend |
|
def test_lora(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
|
|
|
|
with torch.no_grad(): |
|
non_lora_sample = model(**inputs_dict).sample |
|
|
|
unet_lora_config = get_unet_lora_config() |
|
model.add_adapter(unet_lora_config) |
|
|
|
assert check_if_lora_correctly_set(model), "Lora not correctly set in UNet." |
|
|
|
|
|
with torch.no_grad(): |
|
lora_sample = model(**inputs_dict).sample |
|
|
|
assert not torch.allclose( |
|
non_lora_sample, lora_sample, atol=1e-4, rtol=1e-4 |
|
), "LoRA injected UNet should produce different results." |
|
|
|
@require_peft_backend |
|
def test_lora_serialization(self): |
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() |
|
model = self.model_class(**init_dict) |
|
model.to(torch_device) |
|
|
|
|
|
with torch.no_grad(): |
|
non_lora_sample = model(**inputs_dict).sample |
|
|
|
unet_lora_config = get_unet_lora_config() |
|
model.add_adapter(unet_lora_config) |
|
|
|
assert check_if_lora_correctly_set(model), "Lora not correctly set in UNet." |
|
|
|
|
|
with torch.no_grad(): |
|
lora_sample_1 = model(**inputs_dict).sample |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
model.save_attn_procs(tmpdirname) |
|
model.unload_lora() |
|
model.load_attn_procs(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")) |
|
|
|
assert check_if_lora_correctly_set(model), "Lora not correctly set in UNet." |
|
|
|
with torch.no_grad(): |
|
lora_sample_2 = model(**inputs_dict).sample |
|
|
|
assert not torch.allclose( |
|
non_lora_sample, lora_sample_1, atol=1e-4, rtol=1e-4 |
|
), "LoRA injected UNet should produce different results." |
|
assert torch.allclose( |
|
lora_sample_1, lora_sample_2, atol=1e-4, rtol=1e-4 |
|
), "Loading from a saved checkpoint should produce identical results." |
|
|
|
|
|
@slow |
|
class UNet2DConditionModelIntegrationTests(unittest.TestCase): |
|
def get_file_format(self, seed, shape): |
|
return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy" |
|
|
|
def tearDown(self): |
|
|
|
super().tearDown() |
|
gc.collect() |
|
backend_empty_cache(torch_device) |
|
|
|
def get_latents(self, seed=0, shape=(4, 4, 64, 64), fp16=False): |
|
dtype = torch.float16 if fp16 else torch.float32 |
|
image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype) |
|
return image |
|
|
|
def get_unet_model(self, fp16=False, model_id="CompVis/stable-diffusion-v1-4"): |
|
revision = "fp16" if fp16 else None |
|
torch_dtype = torch.float16 if fp16 else torch.float32 |
|
|
|
model = UNet2DConditionModel.from_pretrained( |
|
model_id, subfolder="unet", torch_dtype=torch_dtype, revision=revision |
|
) |
|
model.to(torch_device).eval() |
|
|
|
return model |
|
|
|
@require_torch_gpu |
|
def test_set_attention_slice_auto(self): |
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
unet = self.get_unet_model() |
|
unet.set_attention_slice("auto") |
|
|
|
latents = self.get_latents(33) |
|
encoder_hidden_states = self.get_encoder_hidden_states(33) |
|
timestep = 1 |
|
|
|
with torch.no_grad(): |
|
_ = unet(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample |
|
|
|
mem_bytes = torch.cuda.max_memory_allocated() |
|
|
|
assert mem_bytes < 5 * 10**9 |
|
|
|
@require_torch_gpu |
|
def test_set_attention_slice_max(self): |
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
unet = self.get_unet_model() |
|
unet.set_attention_slice("max") |
|
|
|
latents = self.get_latents(33) |
|
encoder_hidden_states = self.get_encoder_hidden_states(33) |
|
timestep = 1 |
|
|
|
with torch.no_grad(): |
|
_ = unet(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample |
|
|
|
mem_bytes = torch.cuda.max_memory_allocated() |
|
|
|
assert mem_bytes < 5 * 10**9 |
|
|
|
@require_torch_gpu |
|
def test_set_attention_slice_int(self): |
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
unet = self.get_unet_model() |
|
unet.set_attention_slice(2) |
|
|
|
latents = self.get_latents(33) |
|
encoder_hidden_states = self.get_encoder_hidden_states(33) |
|
timestep = 1 |
|
|
|
with torch.no_grad(): |
|
_ = unet(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample |
|
|
|
mem_bytes = torch.cuda.max_memory_allocated() |
|
|
|
assert mem_bytes < 5 * 10**9 |
|
|
|
@require_torch_gpu |
|
def test_set_attention_slice_list(self): |
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
|
|
slice_list = 16 * [2, 3] |
|
unet = self.get_unet_model() |
|
unet.set_attention_slice(slice_list) |
|
|
|
latents = self.get_latents(33) |
|
encoder_hidden_states = self.get_encoder_hidden_states(33) |
|
timestep = 1 |
|
|
|
with torch.no_grad(): |
|
_ = unet(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample |
|
|
|
mem_bytes = torch.cuda.max_memory_allocated() |
|
|
|
assert mem_bytes < 5 * 10**9 |
|
|
|
def get_encoder_hidden_states(self, seed=0, shape=(4, 77, 768), fp16=False): |
|
dtype = torch.float16 if fp16 else torch.float32 |
|
hidden_states = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype) |
|
return hidden_states |
|
|
|
@parameterized.expand( |
|
[ |
|
|
|
[33, 4, [-0.4424, 0.1510, -0.1937, 0.2118, 0.3746, -0.3957, 0.0160, -0.0435]], |
|
[47, 0.55, [-0.1508, 0.0379, -0.3075, 0.2540, 0.3633, -0.0821, 0.1719, -0.0207]], |
|
[21, 0.89, [-0.6479, 0.6364, -0.3464, 0.8697, 0.4443, -0.6289, -0.0091, 0.1778]], |
|
[9, 1000, [0.8888, -0.5659, 0.5834, -0.7469, 1.1912, -0.3923, 1.1241, -0.4424]], |
|
|
|
] |
|
) |
|
@require_torch_accelerator_with_fp16 |
|
def test_compvis_sd_v1_4(self, seed, timestep, expected_slice): |
|
model = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4") |
|
latents = self.get_latents(seed) |
|
encoder_hidden_states = self.get_encoder_hidden_states(seed) |
|
|
|
timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device) |
|
|
|
with torch.no_grad(): |
|
sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample |
|
|
|
assert sample.shape == latents.shape |
|
|
|
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() |
|
expected_output_slice = torch.tensor(expected_slice) |
|
|
|
assert torch_all_close(output_slice, expected_output_slice, atol=1e-3) |
|
|
|
@parameterized.expand( |
|
[ |
|
|
|
[83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], |
|
[17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], |
|
[8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], |
|
[3, 1000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], |
|
|
|
] |
|
) |
|
@require_torch_accelerator_with_fp16 |
|
def test_compvis_sd_v1_4_fp16(self, seed, timestep, expected_slice): |
|
model = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4", fp16=True) |
|
latents = self.get_latents(seed, fp16=True) |
|
encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True) |
|
|
|
timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device) |
|
|
|
with torch.no_grad(): |
|
sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample |
|
|
|
assert sample.shape == latents.shape |
|
|
|
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() |
|
expected_output_slice = torch.tensor(expected_slice) |
|
|
|
assert torch_all_close(output_slice, expected_output_slice, atol=5e-3) |
|
|
|
@parameterized.expand( |
|
[ |
|
|
|
[33, 4, [-0.4430, 0.1570, -0.1867, 0.2376, 0.3205, -0.3681, 0.0525, -0.0722]], |
|
[47, 0.55, [-0.1415, 0.0129, -0.3136, 0.2257, 0.3430, -0.0536, 0.2114, -0.0436]], |
|
[21, 0.89, [-0.7091, 0.6664, -0.3643, 0.9032, 0.4499, -0.6541, 0.0139, 0.1750]], |
|
[9, 1000, [0.8878, -0.5659, 0.5844, -0.7442, 1.1883, -0.3927, 1.1192, -0.4423]], |
|
|
|
] |
|
) |
|
@require_torch_accelerator |
|
@skip_mps |
|
def test_compvis_sd_v1_5(self, seed, timestep, expected_slice): |
|
model = self.get_unet_model(model_id="runwayml/stable-diffusion-v1-5") |
|
latents = self.get_latents(seed) |
|
encoder_hidden_states = self.get_encoder_hidden_states(seed) |
|
|
|
timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device) |
|
|
|
with torch.no_grad(): |
|
sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample |
|
|
|
assert sample.shape == latents.shape |
|
|
|
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() |
|
expected_output_slice = torch.tensor(expected_slice) |
|
|
|
assert torch_all_close(output_slice, expected_output_slice, atol=1e-3) |
|
|
|
@parameterized.expand( |
|
[ |
|
|
|
[83, 4, [-0.2695, -0.1669, 0.0073, -0.3181, -0.1187, -0.1676, -0.1395, -0.5972]], |
|
[17, 0.55, [-0.1290, -0.2588, 0.0551, -0.0916, 0.3286, 0.0238, -0.3669, 0.0322]], |
|
[8, 0.89, [-0.5283, 0.1198, 0.0870, -0.1141, 0.9189, -0.0150, 0.5474, 0.4319]], |
|
[3, 1000, [-0.5601, 0.2411, -0.5435, 0.1268, 1.1338, -0.2427, -0.0280, -1.0020]], |
|
|
|
] |
|
) |
|
@require_torch_accelerator_with_fp16 |
|
def test_compvis_sd_v1_5_fp16(self, seed, timestep, expected_slice): |
|
model = self.get_unet_model(model_id="runwayml/stable-diffusion-v1-5", fp16=True) |
|
latents = self.get_latents(seed, fp16=True) |
|
encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True) |
|
|
|
timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device) |
|
|
|
with torch.no_grad(): |
|
sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample |
|
|
|
assert sample.shape == latents.shape |
|
|
|
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() |
|
expected_output_slice = torch.tensor(expected_slice) |
|
|
|
assert torch_all_close(output_slice, expected_output_slice, atol=5e-3) |
|
|
|
@parameterized.expand( |
|
[ |
|
|
|
[33, 4, [-0.7639, 0.0106, -0.1615, -0.3487, -0.0423, -0.7972, 0.0085, -0.4858]], |
|
[47, 0.55, [-0.6564, 0.0795, -1.9026, -0.6258, 1.8235, 1.2056, 1.2169, 0.9073]], |
|
[21, 0.89, [0.0327, 0.4399, -0.6358, 0.3417, 0.4120, -0.5621, -0.0397, -1.0430]], |
|
[9, 1000, [0.1600, 0.7303, -1.0556, -0.3515, -0.7440, -1.2037, -1.8149, -1.8931]], |
|
|
|
] |
|
) |
|
@require_torch_accelerator |
|
@skip_mps |
|
def test_compvis_sd_inpaint(self, seed, timestep, expected_slice): |
|
model = self.get_unet_model(model_id="runwayml/stable-diffusion-inpainting") |
|
latents = self.get_latents(seed, shape=(4, 9, 64, 64)) |
|
encoder_hidden_states = self.get_encoder_hidden_states(seed) |
|
|
|
timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device) |
|
|
|
with torch.no_grad(): |
|
sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample |
|
|
|
assert sample.shape == (4, 4, 64, 64) |
|
|
|
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() |
|
expected_output_slice = torch.tensor(expected_slice) |
|
|
|
assert torch_all_close(output_slice, expected_output_slice, atol=3e-3) |
|
|
|
@parameterized.expand( |
|
[ |
|
|
|
[83, 4, [-0.1047, -1.7227, 0.1067, 0.0164, -0.5698, -0.4172, -0.1388, 1.1387]], |
|
[17, 0.55, [0.0975, -0.2856, -0.3508, -0.4600, 0.3376, 0.2930, -0.2747, -0.7026]], |
|
[8, 0.89, [-0.0952, 0.0183, -0.5825, -0.1981, 0.1131, 0.4668, -0.0395, -0.3486]], |
|
[3, 1000, [0.4790, 0.4949, -1.0732, -0.7158, 0.7959, -0.9478, 0.1105, -0.9741]], |
|
|
|
] |
|
) |
|
@require_torch_accelerator_with_fp16 |
|
def test_compvis_sd_inpaint_fp16(self, seed, timestep, expected_slice): |
|
model = self.get_unet_model(model_id="runwayml/stable-diffusion-inpainting", fp16=True) |
|
latents = self.get_latents(seed, shape=(4, 9, 64, 64), fp16=True) |
|
encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True) |
|
|
|
timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device) |
|
|
|
with torch.no_grad(): |
|
sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample |
|
|
|
assert sample.shape == (4, 4, 64, 64) |
|
|
|
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() |
|
expected_output_slice = torch.tensor(expected_slice) |
|
|
|
assert torch_all_close(output_slice, expected_output_slice, atol=5e-3) |
|
|
|
@parameterized.expand( |
|
[ |
|
|
|
[83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], |
|
[17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], |
|
[8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], |
|
[3, 1000, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], |
|
|
|
] |
|
) |
|
@require_torch_accelerator_with_fp16 |
|
def test_stabilityai_sd_v2_fp16(self, seed, timestep, expected_slice): |
|
model = self.get_unet_model(model_id="stabilityai/stable-diffusion-2", fp16=True) |
|
latents = self.get_latents(seed, shape=(4, 4, 96, 96), fp16=True) |
|
encoder_hidden_states = self.get_encoder_hidden_states(seed, shape=(4, 77, 1024), fp16=True) |
|
|
|
timestep = torch.tensor([timestep], dtype=torch.long, device=torch_device) |
|
|
|
with torch.no_grad(): |
|
sample = model(latents, timestep=timestep, encoder_hidden_states=encoder_hidden_states).sample |
|
|
|
assert sample.shape == latents.shape |
|
|
|
output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() |
|
expected_output_slice = torch.tensor(expected_slice) |
|
|
|
assert torch_all_close(output_slice, expected_output_slice, atol=5e-3) |
|
|