NadaGh's picture
End of training
3a25a0a verified
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import inspect
import unittest
import torch
from parameterized import parameterized
from diffusers import PriorTransformer
from diffusers.utils.testing_utils import (
backend_empty_cache,
enable_full_determinism,
floats_tensor,
slow,
torch_all_close,
torch_device,
)
from ..test_modeling_common import ModelTesterMixin
enable_full_determinism()
class PriorTransformerTests(ModelTesterMixin, unittest.TestCase):
model_class = PriorTransformer
main_input_name = "hidden_states"
@property
def dummy_input(self):
batch_size = 4
embedding_dim = 8
num_embeddings = 7
hidden_states = floats_tensor((batch_size, embedding_dim)).to(torch_device)
proj_embedding = floats_tensor((batch_size, embedding_dim)).to(torch_device)
encoder_hidden_states = floats_tensor((batch_size, num_embeddings, embedding_dim)).to(torch_device)
return {
"hidden_states": hidden_states,
"timestep": 2,
"proj_embedding": proj_embedding,
"encoder_hidden_states": encoder_hidden_states,
}
def get_dummy_seed_input(self, seed=0):
torch.manual_seed(seed)
batch_size = 4
embedding_dim = 8
num_embeddings = 7
hidden_states = torch.randn((batch_size, embedding_dim)).to(torch_device)
proj_embedding = torch.randn((batch_size, embedding_dim)).to(torch_device)
encoder_hidden_states = torch.randn((batch_size, num_embeddings, embedding_dim)).to(torch_device)
return {
"hidden_states": hidden_states,
"timestep": 2,
"proj_embedding": proj_embedding,
"encoder_hidden_states": encoder_hidden_states,
}
@property
def input_shape(self):
return (4, 8)
@property
def output_shape(self):
return (4, 8)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"num_attention_heads": 2,
"attention_head_dim": 4,
"num_layers": 2,
"embedding_dim": 8,
"num_embeddings": 7,
"additional_embeddings": 4,
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_from_pretrained_hub(self):
model, loading_info = PriorTransformer.from_pretrained(
"hf-internal-testing/prior-dummy", output_loading_info=True
)
self.assertIsNotNone(model)
self.assertEqual(len(loading_info["missing_keys"]), 0)
model.to(torch_device)
hidden_states = model(**self.dummy_input)[0]
assert hidden_states is not None, "Make sure output is not None"
def test_forward_signature(self):
init_dict, _ = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["hidden_states", "timestep"]
self.assertListEqual(arg_names[:2], expected_arg_names)
def test_output_pretrained(self):
model = PriorTransformer.from_pretrained("hf-internal-testing/prior-dummy")
model = model.to(torch_device)
if hasattr(model, "set_default_attn_processor"):
model.set_default_attn_processor()
input = self.get_dummy_seed_input()
with torch.no_grad():
output = model(**input)[0]
output_slice = output[0, :5].flatten().cpu()
print(output_slice)
# Since the VAE Gaussian prior's generator is seeded on the appropriate device,
# the expected output slices are not the same for CPU and GPU.
expected_output_slice = torch.tensor([-1.3436, -0.2870, 0.7538, 0.4368, -0.0239])
self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2))
@slow
class PriorTransformerIntegrationTests(unittest.TestCase):
def get_dummy_seed_input(self, batch_size=1, embedding_dim=768, num_embeddings=77, seed=0):
torch.manual_seed(seed)
hidden_states = torch.randn((batch_size, embedding_dim)).to(torch_device)
proj_embedding = torch.randn((batch_size, embedding_dim)).to(torch_device)
encoder_hidden_states = torch.randn((batch_size, num_embeddings, embedding_dim)).to(torch_device)
return {
"hidden_states": hidden_states,
"timestep": 2,
"proj_embedding": proj_embedding,
"encoder_hidden_states": encoder_hidden_states,
}
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
backend_empty_cache(torch_device)
@parameterized.expand(
[
# fmt: off
[13, [-0.5861, 0.1283, -0.0931, 0.0882, 0.4476, 0.1329, -0.0498, 0.0640]],
[37, [-0.4913, 0.0110, -0.0483, 0.0541, 0.4954, -0.0170, 0.0354, 0.1651]],
# fmt: on
]
)
def test_kandinsky_prior(self, seed, expected_slice):
model = PriorTransformer.from_pretrained("kandinsky-community/kandinsky-2-1-prior", subfolder="prior")
model.to(torch_device)
input = self.get_dummy_seed_input(seed=seed)
with torch.no_grad():
sample = model(**input)[0]
assert list(sample.shape) == [1, 768]
output_slice = sample[0, :8].flatten().cpu()
print(output_slice)
expected_output_slice = torch.tensor(expected_slice)
assert torch_all_close(output_slice, expected_output_slice, atol=1e-3)