|
import argparse |
|
from contextlib import nullcontext |
|
|
|
import safetensors.torch |
|
import torch |
|
from accelerate import init_empty_weights |
|
|
|
from diffusers import AutoencoderKL, SD3Transformer2DModel |
|
from diffusers.loaders.single_file_utils import convert_ldm_vae_checkpoint |
|
from diffusers.models.modeling_utils import load_model_dict_into_meta |
|
from diffusers.utils.import_utils import is_accelerate_available |
|
|
|
|
|
CTX = init_empty_weights if is_accelerate_available else nullcontext |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--checkpoint_path", type=str) |
|
parser.add_argument("--output_path", type=str) |
|
parser.add_argument("--dtype", type=str, default="fp16") |
|
|
|
args = parser.parse_args() |
|
dtype = torch.float16 if args.dtype == "fp16" else torch.float32 |
|
|
|
|
|
def load_original_checkpoint(ckpt_path): |
|
original_state_dict = safetensors.torch.load_file(ckpt_path) |
|
keys = list(original_state_dict.keys()) |
|
for k in keys: |
|
if "model.diffusion_model." in k: |
|
original_state_dict[k.replace("model.diffusion_model.", "")] = original_state_dict.pop(k) |
|
|
|
return original_state_dict |
|
|
|
|
|
|
|
|
|
def swap_scale_shift(weight, dim): |
|
shift, scale = weight.chunk(2, dim=0) |
|
new_weight = torch.cat([scale, shift], dim=0) |
|
return new_weight |
|
|
|
|
|
def convert_sd3_transformer_checkpoint_to_diffusers(original_state_dict, num_layers, caption_projection_dim): |
|
converted_state_dict = {} |
|
|
|
|
|
converted_state_dict["pos_embed.pos_embed"] = original_state_dict.pop("pos_embed") |
|
converted_state_dict["pos_embed.proj.weight"] = original_state_dict.pop("x_embedder.proj.weight") |
|
converted_state_dict["pos_embed.proj.bias"] = original_state_dict.pop("x_embedder.proj.bias") |
|
|
|
|
|
converted_state_dict["time_text_embed.timestep_embedder.linear_1.weight"] = original_state_dict.pop( |
|
"t_embedder.mlp.0.weight" |
|
) |
|
converted_state_dict["time_text_embed.timestep_embedder.linear_1.bias"] = original_state_dict.pop( |
|
"t_embedder.mlp.0.bias" |
|
) |
|
converted_state_dict["time_text_embed.timestep_embedder.linear_2.weight"] = original_state_dict.pop( |
|
"t_embedder.mlp.2.weight" |
|
) |
|
converted_state_dict["time_text_embed.timestep_embedder.linear_2.bias"] = original_state_dict.pop( |
|
"t_embedder.mlp.2.bias" |
|
) |
|
|
|
|
|
converted_state_dict["context_embedder.weight"] = original_state_dict.pop("context_embedder.weight") |
|
converted_state_dict["context_embedder.bias"] = original_state_dict.pop("context_embedder.bias") |
|
|
|
|
|
converted_state_dict["time_text_embed.text_embedder.linear_1.weight"] = original_state_dict.pop( |
|
"y_embedder.mlp.0.weight" |
|
) |
|
converted_state_dict["time_text_embed.text_embedder.linear_1.bias"] = original_state_dict.pop( |
|
"y_embedder.mlp.0.bias" |
|
) |
|
converted_state_dict["time_text_embed.text_embedder.linear_2.weight"] = original_state_dict.pop( |
|
"y_embedder.mlp.2.weight" |
|
) |
|
converted_state_dict["time_text_embed.text_embedder.linear_2.bias"] = original_state_dict.pop( |
|
"y_embedder.mlp.2.bias" |
|
) |
|
|
|
|
|
for i in range(num_layers): |
|
|
|
sample_q, sample_k, sample_v = torch.chunk( |
|
original_state_dict.pop(f"joint_blocks.{i}.x_block.attn.qkv.weight"), 3, dim=0 |
|
) |
|
context_q, context_k, context_v = torch.chunk( |
|
original_state_dict.pop(f"joint_blocks.{i}.context_block.attn.qkv.weight"), 3, dim=0 |
|
) |
|
sample_q_bias, sample_k_bias, sample_v_bias = torch.chunk( |
|
original_state_dict.pop(f"joint_blocks.{i}.x_block.attn.qkv.bias"), 3, dim=0 |
|
) |
|
context_q_bias, context_k_bias, context_v_bias = torch.chunk( |
|
original_state_dict.pop(f"joint_blocks.{i}.context_block.attn.qkv.bias"), 3, dim=0 |
|
) |
|
|
|
converted_state_dict[f"transformer_blocks.{i}.attn.to_q.weight"] = torch.cat([sample_q]) |
|
converted_state_dict[f"transformer_blocks.{i}.attn.to_q.bias"] = torch.cat([sample_q_bias]) |
|
converted_state_dict[f"transformer_blocks.{i}.attn.to_k.weight"] = torch.cat([sample_k]) |
|
converted_state_dict[f"transformer_blocks.{i}.attn.to_k.bias"] = torch.cat([sample_k_bias]) |
|
converted_state_dict[f"transformer_blocks.{i}.attn.to_v.weight"] = torch.cat([sample_v]) |
|
converted_state_dict[f"transformer_blocks.{i}.attn.to_v.bias"] = torch.cat([sample_v_bias]) |
|
|
|
converted_state_dict[f"transformer_blocks.{i}.attn.add_q_proj.weight"] = torch.cat([context_q]) |
|
converted_state_dict[f"transformer_blocks.{i}.attn.add_q_proj.bias"] = torch.cat([context_q_bias]) |
|
converted_state_dict[f"transformer_blocks.{i}.attn.add_k_proj.weight"] = torch.cat([context_k]) |
|
converted_state_dict[f"transformer_blocks.{i}.attn.add_k_proj.bias"] = torch.cat([context_k_bias]) |
|
converted_state_dict[f"transformer_blocks.{i}.attn.add_v_proj.weight"] = torch.cat([context_v]) |
|
converted_state_dict[f"transformer_blocks.{i}.attn.add_v_proj.bias"] = torch.cat([context_v_bias]) |
|
|
|
|
|
converted_state_dict[f"transformer_blocks.{i}.attn.to_out.0.weight"] = original_state_dict.pop( |
|
f"joint_blocks.{i}.x_block.attn.proj.weight" |
|
) |
|
converted_state_dict[f"transformer_blocks.{i}.attn.to_out.0.bias"] = original_state_dict.pop( |
|
f"joint_blocks.{i}.x_block.attn.proj.bias" |
|
) |
|
if not (i == num_layers - 1): |
|
converted_state_dict[f"transformer_blocks.{i}.attn.to_add_out.weight"] = original_state_dict.pop( |
|
f"joint_blocks.{i}.context_block.attn.proj.weight" |
|
) |
|
converted_state_dict[f"transformer_blocks.{i}.attn.to_add_out.bias"] = original_state_dict.pop( |
|
f"joint_blocks.{i}.context_block.attn.proj.bias" |
|
) |
|
|
|
|
|
converted_state_dict[f"transformer_blocks.{i}.norm1.linear.weight"] = original_state_dict.pop( |
|
f"joint_blocks.{i}.x_block.adaLN_modulation.1.weight" |
|
) |
|
converted_state_dict[f"transformer_blocks.{i}.norm1.linear.bias"] = original_state_dict.pop( |
|
f"joint_blocks.{i}.x_block.adaLN_modulation.1.bias" |
|
) |
|
if not (i == num_layers - 1): |
|
converted_state_dict[f"transformer_blocks.{i}.norm1_context.linear.weight"] = original_state_dict.pop( |
|
f"joint_blocks.{i}.context_block.adaLN_modulation.1.weight" |
|
) |
|
converted_state_dict[f"transformer_blocks.{i}.norm1_context.linear.bias"] = original_state_dict.pop( |
|
f"joint_blocks.{i}.context_block.adaLN_modulation.1.bias" |
|
) |
|
else: |
|
converted_state_dict[f"transformer_blocks.{i}.norm1_context.linear.weight"] = swap_scale_shift( |
|
original_state_dict.pop(f"joint_blocks.{i}.context_block.adaLN_modulation.1.weight"), |
|
dim=caption_projection_dim, |
|
) |
|
converted_state_dict[f"transformer_blocks.{i}.norm1_context.linear.bias"] = swap_scale_shift( |
|
original_state_dict.pop(f"joint_blocks.{i}.context_block.adaLN_modulation.1.bias"), |
|
dim=caption_projection_dim, |
|
) |
|
|
|
|
|
converted_state_dict[f"transformer_blocks.{i}.ff.net.0.proj.weight"] = original_state_dict.pop( |
|
f"joint_blocks.{i}.x_block.mlp.fc1.weight" |
|
) |
|
converted_state_dict[f"transformer_blocks.{i}.ff.net.0.proj.bias"] = original_state_dict.pop( |
|
f"joint_blocks.{i}.x_block.mlp.fc1.bias" |
|
) |
|
converted_state_dict[f"transformer_blocks.{i}.ff.net.2.weight"] = original_state_dict.pop( |
|
f"joint_blocks.{i}.x_block.mlp.fc2.weight" |
|
) |
|
converted_state_dict[f"transformer_blocks.{i}.ff.net.2.bias"] = original_state_dict.pop( |
|
f"joint_blocks.{i}.x_block.mlp.fc2.bias" |
|
) |
|
if not (i == num_layers - 1): |
|
converted_state_dict[f"transformer_blocks.{i}.ff_context.net.0.proj.weight"] = original_state_dict.pop( |
|
f"joint_blocks.{i}.context_block.mlp.fc1.weight" |
|
) |
|
converted_state_dict[f"transformer_blocks.{i}.ff_context.net.0.proj.bias"] = original_state_dict.pop( |
|
f"joint_blocks.{i}.context_block.mlp.fc1.bias" |
|
) |
|
converted_state_dict[f"transformer_blocks.{i}.ff_context.net.2.weight"] = original_state_dict.pop( |
|
f"joint_blocks.{i}.context_block.mlp.fc2.weight" |
|
) |
|
converted_state_dict[f"transformer_blocks.{i}.ff_context.net.2.bias"] = original_state_dict.pop( |
|
f"joint_blocks.{i}.context_block.mlp.fc2.bias" |
|
) |
|
|
|
|
|
converted_state_dict["proj_out.weight"] = original_state_dict.pop("final_layer.linear.weight") |
|
converted_state_dict["proj_out.bias"] = original_state_dict.pop("final_layer.linear.bias") |
|
converted_state_dict["norm_out.linear.weight"] = swap_scale_shift( |
|
original_state_dict.pop("final_layer.adaLN_modulation.1.weight"), dim=caption_projection_dim |
|
) |
|
converted_state_dict["norm_out.linear.bias"] = swap_scale_shift( |
|
original_state_dict.pop("final_layer.adaLN_modulation.1.bias"), dim=caption_projection_dim |
|
) |
|
|
|
return converted_state_dict |
|
|
|
|
|
def is_vae_in_checkpoint(original_state_dict): |
|
return ("first_stage_model.decoder.conv_in.weight" in original_state_dict) and ( |
|
"first_stage_model.encoder.conv_in.weight" in original_state_dict |
|
) |
|
|
|
|
|
def main(args): |
|
original_ckpt = load_original_checkpoint(args.checkpoint_path) |
|
num_layers = list(set(int(k.split(".", 2)[1]) for k in original_ckpt if "joint_blocks" in k))[-1] + 1 |
|
caption_projection_dim = 1536 |
|
|
|
converted_transformer_state_dict = convert_sd3_transformer_checkpoint_to_diffusers( |
|
original_ckpt, num_layers, caption_projection_dim |
|
) |
|
|
|
with CTX(): |
|
transformer = SD3Transformer2DModel( |
|
sample_size=64, |
|
patch_size=2, |
|
in_channels=16, |
|
joint_attention_dim=4096, |
|
num_layers=num_layers, |
|
caption_projection_dim=caption_projection_dim, |
|
num_attention_heads=24, |
|
pos_embed_max_size=192, |
|
) |
|
if is_accelerate_available(): |
|
load_model_dict_into_meta(transformer, converted_transformer_state_dict) |
|
else: |
|
transformer.load_state_dict(converted_transformer_state_dict, strict=True) |
|
|
|
print("Saving SD3 Transformer in Diffusers format.") |
|
transformer.to(dtype).save_pretrained(f"{args.output_path}/transformer") |
|
|
|
if is_vae_in_checkpoint(original_ckpt): |
|
with CTX(): |
|
vae = AutoencoderKL.from_config( |
|
"stabilityai/stable-diffusion-xl-base-1.0", |
|
subfolder="vae", |
|
latent_channels=16, |
|
use_post_quant_conv=False, |
|
use_quant_conv=False, |
|
scaling_factor=1.5305, |
|
shift_factor=0.0609, |
|
) |
|
converted_vae_state_dict = convert_ldm_vae_checkpoint(original_ckpt, vae.config) |
|
if is_accelerate_available(): |
|
load_model_dict_into_meta(vae, converted_vae_state_dict) |
|
else: |
|
vae.load_state_dict(converted_vae_state_dict, strict=True) |
|
|
|
print("Saving SD3 Autoencoder in Diffusers format.") |
|
vae.to(dtype).save_pretrained(f"{args.output_path}/vae") |
|
|
|
|
|
if __name__ == "__main__": |
|
main(args) |
|
|