|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Conversion script for the MusicLDM checkpoints.""" |
|
|
|
import argparse |
|
import re |
|
|
|
import torch |
|
import yaml |
|
from transformers import ( |
|
AutoFeatureExtractor, |
|
AutoTokenizer, |
|
ClapConfig, |
|
ClapModel, |
|
SpeechT5HifiGan, |
|
SpeechT5HifiGanConfig, |
|
) |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
DDIMScheduler, |
|
DPMSolverMultistepScheduler, |
|
EulerAncestralDiscreteScheduler, |
|
EulerDiscreteScheduler, |
|
HeunDiscreteScheduler, |
|
LMSDiscreteScheduler, |
|
MusicLDMPipeline, |
|
PNDMScheduler, |
|
UNet2DConditionModel, |
|
) |
|
|
|
|
|
|
|
def shave_segments(path, n_shave_prefix_segments=1): |
|
""" |
|
Removes segments. Positive values shave the first segments, negative shave the last segments. |
|
""" |
|
if n_shave_prefix_segments >= 0: |
|
return ".".join(path.split(".")[n_shave_prefix_segments:]) |
|
else: |
|
return ".".join(path.split(".")[:n_shave_prefix_segments]) |
|
|
|
|
|
|
|
def renew_resnet_paths(old_list, n_shave_prefix_segments=0): |
|
""" |
|
Updates paths inside resnets to the new naming scheme (local renaming) |
|
""" |
|
mapping = [] |
|
for old_item in old_list: |
|
new_item = old_item.replace("in_layers.0", "norm1") |
|
new_item = new_item.replace("in_layers.2", "conv1") |
|
|
|
new_item = new_item.replace("out_layers.0", "norm2") |
|
new_item = new_item.replace("out_layers.3", "conv2") |
|
|
|
new_item = new_item.replace("emb_layers.1", "time_emb_proj") |
|
new_item = new_item.replace("skip_connection", "conv_shortcut") |
|
|
|
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) |
|
|
|
mapping.append({"old": old_item, "new": new_item}) |
|
|
|
return mapping |
|
|
|
|
|
|
|
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0): |
|
""" |
|
Updates paths inside resnets to the new naming scheme (local renaming) |
|
""" |
|
mapping = [] |
|
for old_item in old_list: |
|
new_item = old_item |
|
|
|
new_item = new_item.replace("nin_shortcut", "conv_shortcut") |
|
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) |
|
|
|
mapping.append({"old": old_item, "new": new_item}) |
|
|
|
return mapping |
|
|
|
|
|
|
|
def renew_attention_paths(old_list): |
|
""" |
|
Updates paths inside attentions to the new naming scheme (local renaming) |
|
""" |
|
mapping = [] |
|
for old_item in old_list: |
|
new_item = old_item |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mapping.append({"old": old_item, "new": new_item}) |
|
|
|
return mapping |
|
|
|
|
|
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0): |
|
""" |
|
Updates paths inside attentions to the new naming scheme (local renaming) |
|
""" |
|
mapping = [] |
|
for old_item in old_list: |
|
new_item = old_item |
|
|
|
new_item = new_item.replace("norm.weight", "group_norm.weight") |
|
new_item = new_item.replace("norm.bias", "group_norm.bias") |
|
|
|
new_item = new_item.replace("q.weight", "to_q.weight") |
|
new_item = new_item.replace("q.bias", "to_q.bias") |
|
|
|
new_item = new_item.replace("k.weight", "to_k.weight") |
|
new_item = new_item.replace("k.bias", "to_k.bias") |
|
|
|
new_item = new_item.replace("v.weight", "to_v.weight") |
|
new_item = new_item.replace("v.bias", "to_v.bias") |
|
|
|
new_item = new_item.replace("proj_out.weight", "to_out.0.weight") |
|
new_item = new_item.replace("proj_out.bias", "to_out.0.bias") |
|
|
|
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) |
|
|
|
mapping.append({"old": old_item, "new": new_item}) |
|
|
|
return mapping |
|
|
|
|
|
|
|
def assign_to_checkpoint( |
|
paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None |
|
): |
|
""" |
|
This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits |
|
attention layers, and takes into account additional replacements that may arise. |
|
|
|
Assigns the weights to the new checkpoint. |
|
""" |
|
assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys." |
|
|
|
|
|
if attention_paths_to_split is not None: |
|
for path, path_map in attention_paths_to_split.items(): |
|
old_tensor = old_checkpoint[path] |
|
channels = old_tensor.shape[0] // 3 |
|
|
|
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1) |
|
|
|
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3 |
|
|
|
old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:]) |
|
query, key, value = old_tensor.split(channels // num_heads, dim=1) |
|
|
|
checkpoint[path_map["query"]] = query.reshape(target_shape) |
|
checkpoint[path_map["key"]] = key.reshape(target_shape) |
|
checkpoint[path_map["value"]] = value.reshape(target_shape) |
|
|
|
for path in paths: |
|
new_path = path["new"] |
|
|
|
|
|
if attention_paths_to_split is not None and new_path in attention_paths_to_split: |
|
continue |
|
|
|
|
|
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0") |
|
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0") |
|
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1") |
|
|
|
if additional_replacements is not None: |
|
for replacement in additional_replacements: |
|
new_path = new_path.replace(replacement["old"], replacement["new"]) |
|
|
|
|
|
if "proj_attn.weight" in new_path: |
|
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0] |
|
else: |
|
checkpoint[new_path] = old_checkpoint[path["old"]] |
|
|
|
|
|
def conv_attn_to_linear(checkpoint): |
|
keys = list(checkpoint.keys()) |
|
attn_keys = ["to_q.weight", "to_k.weight", "to_v.weight"] |
|
proj_key = "to_out.0.weight" |
|
for key in keys: |
|
if ".".join(key.split(".")[-2:]) in attn_keys or ".".join(key.split(".")[-3:]) == proj_key: |
|
if checkpoint[key].ndim > 2: |
|
checkpoint[key] = checkpoint[key].squeeze() |
|
|
|
|
|
def create_unet_diffusers_config(original_config, image_size: int): |
|
""" |
|
Creates a UNet config for diffusers based on the config of the original MusicLDM model. |
|
""" |
|
unet_params = original_config["model"]["params"]["unet_config"]["params"] |
|
vae_params = original_config["model"]["params"]["first_stage_config"]["params"]["ddconfig"] |
|
|
|
block_out_channels = [unet_params["model_channels"] * mult for mult in unet_params["channel_mult"]] |
|
|
|
down_block_types = [] |
|
resolution = 1 |
|
for i in range(len(block_out_channels)): |
|
block_type = "CrossAttnDownBlock2D" if resolution in unet_params["attention_resolutions"] else "DownBlock2D" |
|
down_block_types.append(block_type) |
|
if i != len(block_out_channels) - 1: |
|
resolution *= 2 |
|
|
|
up_block_types = [] |
|
for i in range(len(block_out_channels)): |
|
block_type = "CrossAttnUpBlock2D" if resolution in unet_params["attention_resolutions"] else "UpBlock2D" |
|
up_block_types.append(block_type) |
|
resolution //= 2 |
|
|
|
vae_scale_factor = 2 ** (len(vae_params["ch_mult"]) - 1) |
|
|
|
cross_attention_dim = ( |
|
unet_params["cross_attention_dim"] if "cross_attention_dim" in unet_params else block_out_channels |
|
) |
|
|
|
class_embed_type = "simple_projection" if "extra_film_condition_dim" in unet_params else None |
|
projection_class_embeddings_input_dim = ( |
|
unet_params["extra_film_condition_dim"] if "extra_film_condition_dim" in unet_params else None |
|
) |
|
class_embeddings_concat = unet_params["extra_film_use_concat"] if "extra_film_use_concat" in unet_params else None |
|
|
|
config = { |
|
"sample_size": image_size // vae_scale_factor, |
|
"in_channels": unet_params["in_channels"], |
|
"out_channels": unet_params["out_channels"], |
|
"down_block_types": tuple(down_block_types), |
|
"up_block_types": tuple(up_block_types), |
|
"block_out_channels": tuple(block_out_channels), |
|
"layers_per_block": unet_params["num_res_blocks"], |
|
"cross_attention_dim": cross_attention_dim, |
|
"class_embed_type": class_embed_type, |
|
"projection_class_embeddings_input_dim": projection_class_embeddings_input_dim, |
|
"class_embeddings_concat": class_embeddings_concat, |
|
} |
|
|
|
return config |
|
|
|
|
|
|
|
def create_vae_diffusers_config(original_config, checkpoint, image_size: int): |
|
""" |
|
Creates a VAE config for diffusers based on the config of the original MusicLDM model. Compared to the original |
|
Stable Diffusion conversion, this function passes a *learnt* VAE scaling factor to the diffusers VAE. |
|
""" |
|
vae_params = original_config["model"]["params"]["first_stage_config"]["params"]["ddconfig"] |
|
_ = original_config["model"]["params"]["first_stage_config"]["params"]["embed_dim"] |
|
|
|
block_out_channels = [vae_params["ch"] * mult for mult in vae_params["ch_mult"]] |
|
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels) |
|
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels) |
|
|
|
scaling_factor = checkpoint["scale_factor"] if "scale_by_std" in original_config["model"]["params"] else 0.18215 |
|
|
|
config = { |
|
"sample_size": image_size, |
|
"in_channels": vae_params["in_channels"], |
|
"out_channels": vae_params["out_ch"], |
|
"down_block_types": tuple(down_block_types), |
|
"up_block_types": tuple(up_block_types), |
|
"block_out_channels": tuple(block_out_channels), |
|
"latent_channels": vae_params["z_channels"], |
|
"layers_per_block": vae_params["num_res_blocks"], |
|
"scaling_factor": float(scaling_factor), |
|
} |
|
return config |
|
|
|
|
|
|
|
def create_diffusers_schedular(original_config): |
|
schedular = DDIMScheduler( |
|
num_train_timesteps=original_config["model"]["params"]["timesteps"], |
|
beta_start=original_config["model"]["params"]["linear_start"], |
|
beta_end=original_config["model"]["params"]["linear_end"], |
|
beta_schedule="scaled_linear", |
|
) |
|
return schedular |
|
|
|
|
|
def convert_ldm_unet_checkpoint(checkpoint, config, path=None, extract_ema=False): |
|
""" |
|
Takes a state dict and a config, and returns a converted checkpoint. Compared to the original Stable Diffusion |
|
conversion, this function additionally converts the learnt film embedding linear layer. |
|
""" |
|
|
|
|
|
unet_state_dict = {} |
|
keys = list(checkpoint.keys()) |
|
|
|
unet_key = "model.diffusion_model." |
|
|
|
if sum(k.startswith("model_ema") for k in keys) > 100 and extract_ema: |
|
print(f"Checkpoint {path} has both EMA and non-EMA weights.") |
|
print( |
|
"In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA" |
|
" weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag." |
|
) |
|
for key in keys: |
|
if key.startswith("model.diffusion_model"): |
|
flat_ema_key = "model_ema." + "".join(key.split(".")[1:]) |
|
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(flat_ema_key) |
|
else: |
|
if sum(k.startswith("model_ema") for k in keys) > 100: |
|
print( |
|
"In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA" |
|
" weights (usually better for inference), please make sure to add the `--extract_ema` flag." |
|
) |
|
|
|
for key in keys: |
|
if key.startswith(unet_key): |
|
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key) |
|
|
|
new_checkpoint = {} |
|
|
|
new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"] |
|
new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"] |
|
new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"] |
|
new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"] |
|
|
|
new_checkpoint["class_embedding.weight"] = unet_state_dict["film_emb.weight"] |
|
new_checkpoint["class_embedding.bias"] = unet_state_dict["film_emb.bias"] |
|
|
|
new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"] |
|
new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"] |
|
|
|
new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"] |
|
new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"] |
|
new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"] |
|
new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"] |
|
|
|
|
|
num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer}) |
|
input_blocks = { |
|
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key] |
|
for layer_id in range(num_input_blocks) |
|
} |
|
|
|
|
|
num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer}) |
|
middle_blocks = { |
|
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key] |
|
for layer_id in range(num_middle_blocks) |
|
} |
|
|
|
|
|
num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer}) |
|
output_blocks = { |
|
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key] |
|
for layer_id in range(num_output_blocks) |
|
} |
|
|
|
for i in range(1, num_input_blocks): |
|
block_id = (i - 1) // (config["layers_per_block"] + 1) |
|
layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1) |
|
|
|
resnets = [ |
|
key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key |
|
] |
|
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key] |
|
|
|
if f"input_blocks.{i}.0.op.weight" in unet_state_dict: |
|
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop( |
|
f"input_blocks.{i}.0.op.weight" |
|
) |
|
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop( |
|
f"input_blocks.{i}.0.op.bias" |
|
) |
|
|
|
paths = renew_resnet_paths(resnets) |
|
meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"} |
|
assign_to_checkpoint( |
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config |
|
) |
|
|
|
if len(attentions): |
|
paths = renew_attention_paths(attentions) |
|
meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"} |
|
assign_to_checkpoint( |
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config |
|
) |
|
|
|
resnet_0 = middle_blocks[0] |
|
attentions = middle_blocks[1] |
|
resnet_1 = middle_blocks[2] |
|
|
|
resnet_0_paths = renew_resnet_paths(resnet_0) |
|
assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config) |
|
|
|
resnet_1_paths = renew_resnet_paths(resnet_1) |
|
assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config) |
|
|
|
attentions_paths = renew_attention_paths(attentions) |
|
meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"} |
|
assign_to_checkpoint( |
|
attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config |
|
) |
|
|
|
for i in range(num_output_blocks): |
|
block_id = i // (config["layers_per_block"] + 1) |
|
layer_in_block_id = i % (config["layers_per_block"] + 1) |
|
output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]] |
|
output_block_list = {} |
|
|
|
for layer in output_block_layers: |
|
layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1) |
|
if layer_id in output_block_list: |
|
output_block_list[layer_id].append(layer_name) |
|
else: |
|
output_block_list[layer_id] = [layer_name] |
|
|
|
if len(output_block_list) > 1: |
|
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key] |
|
attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key] |
|
|
|
resnet_0_paths = renew_resnet_paths(resnets) |
|
paths = renew_resnet_paths(resnets) |
|
|
|
meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"} |
|
assign_to_checkpoint( |
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config |
|
) |
|
|
|
output_block_list = {k: sorted(v) for k, v in output_block_list.items()} |
|
if ["conv.bias", "conv.weight"] in output_block_list.values(): |
|
index = list(output_block_list.values()).index(["conv.bias", "conv.weight"]) |
|
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[ |
|
f"output_blocks.{i}.{index}.conv.weight" |
|
] |
|
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[ |
|
f"output_blocks.{i}.{index}.conv.bias" |
|
] |
|
|
|
|
|
if len(attentions) == 2: |
|
attentions = [] |
|
|
|
if len(attentions): |
|
paths = renew_attention_paths(attentions) |
|
meta_path = { |
|
"old": f"output_blocks.{i}.1", |
|
"new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}", |
|
} |
|
assign_to_checkpoint( |
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config |
|
) |
|
else: |
|
resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1) |
|
for path in resnet_0_paths: |
|
old_path = ".".join(["output_blocks", str(i), path["old"]]) |
|
new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]]) |
|
|
|
new_checkpoint[new_path] = unet_state_dict[old_path] |
|
|
|
return new_checkpoint |
|
|
|
|
|
|
|
def convert_ldm_vae_checkpoint(checkpoint, config): |
|
|
|
vae_state_dict = {} |
|
vae_key = "first_stage_model." |
|
keys = list(checkpoint.keys()) |
|
for key in keys: |
|
if key.startswith(vae_key): |
|
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key) |
|
|
|
new_checkpoint = {} |
|
|
|
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"] |
|
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"] |
|
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"] |
|
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"] |
|
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"] |
|
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"] |
|
|
|
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"] |
|
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"] |
|
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"] |
|
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"] |
|
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"] |
|
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"] |
|
|
|
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"] |
|
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"] |
|
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"] |
|
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"] |
|
|
|
|
|
num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer}) |
|
down_blocks = { |
|
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks) |
|
} |
|
|
|
|
|
num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer}) |
|
up_blocks = { |
|
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks) |
|
} |
|
|
|
for i in range(num_down_blocks): |
|
resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key] |
|
|
|
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: |
|
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop( |
|
f"encoder.down.{i}.downsample.conv.weight" |
|
) |
|
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop( |
|
f"encoder.down.{i}.downsample.conv.bias" |
|
) |
|
|
|
paths = renew_vae_resnet_paths(resnets) |
|
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"} |
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) |
|
|
|
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key] |
|
num_mid_res_blocks = 2 |
|
for i in range(1, num_mid_res_blocks + 1): |
|
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key] |
|
|
|
paths = renew_vae_resnet_paths(resnets) |
|
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} |
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) |
|
|
|
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key] |
|
paths = renew_vae_attention_paths(mid_attentions) |
|
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} |
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) |
|
conv_attn_to_linear(new_checkpoint) |
|
|
|
for i in range(num_up_blocks): |
|
block_id = num_up_blocks - 1 - i |
|
resnets = [ |
|
key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key |
|
] |
|
|
|
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: |
|
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[ |
|
f"decoder.up.{block_id}.upsample.conv.weight" |
|
] |
|
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[ |
|
f"decoder.up.{block_id}.upsample.conv.bias" |
|
] |
|
|
|
paths = renew_vae_resnet_paths(resnets) |
|
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"} |
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) |
|
|
|
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key] |
|
num_mid_res_blocks = 2 |
|
for i in range(1, num_mid_res_blocks + 1): |
|
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key] |
|
|
|
paths = renew_vae_resnet_paths(resnets) |
|
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} |
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) |
|
|
|
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key] |
|
paths = renew_vae_attention_paths(mid_attentions) |
|
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} |
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) |
|
conv_attn_to_linear(new_checkpoint) |
|
return new_checkpoint |
|
|
|
|
|
CLAP_KEYS_TO_MODIFY_MAPPING = { |
|
"text_branch": "text_model", |
|
"audio_branch": "audio_model.audio_encoder", |
|
"attn": "attention.self", |
|
"self.proj": "output.dense", |
|
"attention.self_mask": "attn_mask", |
|
"mlp.fc1": "intermediate.dense", |
|
"mlp.fc2": "output.dense", |
|
"norm1": "layernorm_before", |
|
"norm2": "layernorm_after", |
|
"bn0": "batch_norm", |
|
} |
|
|
|
CLAP_KEYS_TO_IGNORE = [ |
|
"text_transform", |
|
"audio_transform", |
|
"stft", |
|
"logmel_extractor", |
|
"tscam_conv", |
|
"head", |
|
"attn_mask", |
|
] |
|
|
|
CLAP_EXPECTED_MISSING_KEYS = ["text_model.embeddings.token_type_ids"] |
|
|
|
|
|
def convert_open_clap_checkpoint(checkpoint): |
|
""" |
|
Takes a state dict and returns a converted CLAP checkpoint. |
|
""" |
|
|
|
model_state_dict = {} |
|
model_key = "cond_stage_model.model." |
|
keys = list(checkpoint.keys()) |
|
for key in keys: |
|
if key.startswith(model_key): |
|
model_state_dict[key.replace(model_key, "")] = checkpoint.get(key) |
|
|
|
new_checkpoint = {} |
|
|
|
sequential_layers_pattern = r".*sequential.(\d+).*" |
|
text_projection_pattern = r".*_projection.(\d+).*" |
|
|
|
for key, value in model_state_dict.items(): |
|
|
|
for key_to_ignore in CLAP_KEYS_TO_IGNORE: |
|
if key_to_ignore in key: |
|
key = "spectrogram" |
|
|
|
|
|
for key_to_modify, new_key in CLAP_KEYS_TO_MODIFY_MAPPING.items(): |
|
if key_to_modify in key: |
|
key = key.replace(key_to_modify, new_key) |
|
|
|
if re.match(sequential_layers_pattern, key): |
|
|
|
sequential_layer = re.match(sequential_layers_pattern, key).group(1) |
|
|
|
key = key.replace(f"sequential.{sequential_layer}.", f"layers.{int(sequential_layer)//3}.linear.") |
|
elif re.match(text_projection_pattern, key): |
|
projecton_layer = int(re.match(text_projection_pattern, key).group(1)) |
|
|
|
|
|
transformers_projection_layer = 1 if projecton_layer == 0 else 2 |
|
|
|
key = key.replace(f"_projection.{projecton_layer}.", f"_projection.linear{transformers_projection_layer}.") |
|
|
|
if "audio" and "qkv" in key: |
|
|
|
mixed_qkv = value |
|
qkv_dim = mixed_qkv.size(0) // 3 |
|
|
|
query_layer = mixed_qkv[:qkv_dim] |
|
key_layer = mixed_qkv[qkv_dim : qkv_dim * 2] |
|
value_layer = mixed_qkv[qkv_dim * 2 :] |
|
|
|
new_checkpoint[key.replace("qkv", "query")] = query_layer |
|
new_checkpoint[key.replace("qkv", "key")] = key_layer |
|
new_checkpoint[key.replace("qkv", "value")] = value_layer |
|
elif key != "spectrogram": |
|
new_checkpoint[key] = value |
|
|
|
return new_checkpoint |
|
|
|
|
|
def create_transformers_vocoder_config(original_config): |
|
""" |
|
Creates a config for transformers SpeechT5HifiGan based on the config of the vocoder model. |
|
""" |
|
vocoder_params = original_config["model"]["params"]["vocoder_config"]["params"] |
|
|
|
config = { |
|
"model_in_dim": vocoder_params["num_mels"], |
|
"sampling_rate": vocoder_params["sampling_rate"], |
|
"upsample_initial_channel": vocoder_params["upsample_initial_channel"], |
|
"upsample_rates": list(vocoder_params["upsample_rates"]), |
|
"upsample_kernel_sizes": list(vocoder_params["upsample_kernel_sizes"]), |
|
"resblock_kernel_sizes": list(vocoder_params["resblock_kernel_sizes"]), |
|
"resblock_dilation_sizes": [ |
|
list(resblock_dilation) for resblock_dilation in vocoder_params["resblock_dilation_sizes"] |
|
], |
|
"normalize_before": False, |
|
} |
|
|
|
return config |
|
|
|
|
|
def convert_hifigan_checkpoint(checkpoint, config): |
|
""" |
|
Takes a state dict and config, and returns a converted HiFiGAN vocoder checkpoint. |
|
""" |
|
|
|
vocoder_state_dict = {} |
|
vocoder_key = "first_stage_model.vocoder." |
|
keys = list(checkpoint.keys()) |
|
for key in keys: |
|
if key.startswith(vocoder_key): |
|
vocoder_state_dict[key.replace(vocoder_key, "")] = checkpoint.get(key) |
|
|
|
|
|
for i in range(len(config.upsample_rates)): |
|
vocoder_state_dict[f"upsampler.{i}.weight"] = vocoder_state_dict.pop(f"ups.{i}.weight") |
|
vocoder_state_dict[f"upsampler.{i}.bias"] = vocoder_state_dict.pop(f"ups.{i}.bias") |
|
|
|
if not config.normalize_before: |
|
|
|
vocoder_state_dict["mean"] = torch.zeros(config.model_in_dim) |
|
vocoder_state_dict["scale"] = torch.ones(config.model_in_dim) |
|
|
|
return vocoder_state_dict |
|
|
|
|
|
|
|
DEFAULT_CONFIG = { |
|
"model": { |
|
"params": { |
|
"linear_start": 0.0015, |
|
"linear_end": 0.0195, |
|
"timesteps": 1000, |
|
"channels": 8, |
|
"scale_by_std": True, |
|
"unet_config": { |
|
"target": "MusicLDM.latent_diffusion.openaimodel.UNetModel", |
|
"params": { |
|
"extra_film_condition_dim": 512, |
|
"extra_film_use_concat": True, |
|
"in_channels": 8, |
|
"out_channels": 8, |
|
"model_channels": 128, |
|
"attention_resolutions": [8, 4, 2], |
|
"num_res_blocks": 2, |
|
"channel_mult": [1, 2, 3, 5], |
|
"num_head_channels": 32, |
|
}, |
|
}, |
|
"first_stage_config": { |
|
"target": "MusicLDM.variational_autoencoder.autoencoder.AutoencoderKL", |
|
"params": { |
|
"embed_dim": 8, |
|
"ddconfig": { |
|
"z_channels": 8, |
|
"resolution": 256, |
|
"in_channels": 1, |
|
"out_ch": 1, |
|
"ch": 128, |
|
"ch_mult": [1, 2, 4], |
|
"num_res_blocks": 2, |
|
}, |
|
}, |
|
}, |
|
"vocoder_config": { |
|
"target": "MusicLDM.first_stage_model.vocoder", |
|
"params": { |
|
"upsample_rates": [5, 4, 2, 2, 2], |
|
"upsample_kernel_sizes": [16, 16, 8, 4, 4], |
|
"upsample_initial_channel": 1024, |
|
"resblock_kernel_sizes": [3, 7, 11], |
|
"resblock_dilation_sizes": [[1, 3, 5], [1, 3, 5], [1, 3, 5]], |
|
"num_mels": 64, |
|
"sampling_rate": 16000, |
|
}, |
|
}, |
|
}, |
|
}, |
|
} |
|
|
|
|
|
def load_pipeline_from_original_MusicLDM_ckpt( |
|
checkpoint_path: str, |
|
original_config_file: str = None, |
|
image_size: int = 1024, |
|
prediction_type: str = None, |
|
extract_ema: bool = False, |
|
scheduler_type: str = "ddim", |
|
num_in_channels: int = None, |
|
model_channels: int = None, |
|
num_head_channels: int = None, |
|
device: str = None, |
|
from_safetensors: bool = False, |
|
) -> MusicLDMPipeline: |
|
""" |
|
Load an MusicLDM pipeline object from a `.ckpt`/`.safetensors` file and (ideally) a `.yaml` config file. |
|
|
|
Although many of the arguments can be automatically inferred, some of these rely on brittle checks against the |
|
global step count, which will likely fail for models that have undergone further fine-tuning. Therefore, it is |
|
recommended that you override the default values and/or supply an `original_config_file` wherever possible. |
|
|
|
Args: |
|
checkpoint_path (`str`): Path to `.ckpt` file. |
|
original_config_file (`str`): |
|
Path to `.yaml` config file corresponding to the original architecture. If `None`, will be automatically |
|
set to the MusicLDM-s-full-v2 config. |
|
image_size (`int`, *optional*, defaults to 1024): |
|
The image size that the model was trained on. |
|
prediction_type (`str`, *optional*): |
|
The prediction type that the model was trained on. If `None`, will be automatically |
|
inferred by looking for a key in the config. For the default config, the prediction type is `'epsilon'`. |
|
num_in_channels (`int`, *optional*, defaults to None): |
|
The number of UNet input channels. If `None`, it will be automatically inferred from the config. |
|
model_channels (`int`, *optional*, defaults to None): |
|
The number of UNet model channels. If `None`, it will be automatically inferred from the config. Override |
|
to 128 for the small checkpoints, 192 for the medium checkpoints and 256 for the large. |
|
num_head_channels (`int`, *optional*, defaults to None): |
|
The number of UNet head channels. If `None`, it will be automatically inferred from the config. Override |
|
to 32 for the small and medium checkpoints, and 64 for the large. |
|
scheduler_type (`str`, *optional*, defaults to 'pndm'): |
|
Type of scheduler to use. Should be one of `["pndm", "lms", "heun", "euler", "euler-ancestral", "dpm", |
|
"ddim"]`. |
|
extract_ema (`bool`, *optional*, defaults to `False`): Only relevant for |
|
checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights or not. Defaults to |
|
`False`. Pass `True` to extract the EMA weights. EMA weights usually yield higher quality images for |
|
inference. Non-EMA weights are usually better to continue fine-tuning. |
|
device (`str`, *optional*, defaults to `None`): |
|
The device to use. Pass `None` to determine automatically. |
|
from_safetensors (`str`, *optional*, defaults to `False`): |
|
If `checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch. |
|
return: An MusicLDMPipeline object representing the passed-in `.ckpt`/`.safetensors` file. |
|
""" |
|
if from_safetensors: |
|
from safetensors import safe_open |
|
|
|
checkpoint = {} |
|
with safe_open(checkpoint_path, framework="pt", device="cpu") as f: |
|
for key in f.keys(): |
|
checkpoint[key] = f.get_tensor(key) |
|
else: |
|
if device is None: |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
checkpoint = torch.load(checkpoint_path, map_location=device) |
|
else: |
|
checkpoint = torch.load(checkpoint_path, map_location=device) |
|
|
|
if "state_dict" in checkpoint: |
|
checkpoint = checkpoint["state_dict"] |
|
|
|
if original_config_file is None: |
|
original_config = DEFAULT_CONFIG |
|
else: |
|
original_config = yaml.safe_load(original_config_file) |
|
|
|
if num_in_channels is not None: |
|
original_config["model"]["params"]["unet_config"]["params"]["in_channels"] = num_in_channels |
|
|
|
if model_channels is not None: |
|
original_config["model"]["params"]["unet_config"]["params"]["model_channels"] = model_channels |
|
|
|
if num_head_channels is not None: |
|
original_config["model"]["params"]["unet_config"]["params"]["num_head_channels"] = num_head_channels |
|
|
|
if ( |
|
"parameterization" in original_config["model"]["params"] |
|
and original_config["model"]["params"]["parameterization"] == "v" |
|
): |
|
if prediction_type is None: |
|
prediction_type = "v_prediction" |
|
else: |
|
if prediction_type is None: |
|
prediction_type = "epsilon" |
|
|
|
if image_size is None: |
|
image_size = 512 |
|
|
|
num_train_timesteps = original_config["model"]["params"]["timesteps"] |
|
beta_start = original_config["model"]["params"]["linear_start"] |
|
beta_end = original_config["model"]["params"]["linear_end"] |
|
|
|
scheduler = DDIMScheduler( |
|
beta_end=beta_end, |
|
beta_schedule="scaled_linear", |
|
beta_start=beta_start, |
|
num_train_timesteps=num_train_timesteps, |
|
steps_offset=1, |
|
clip_sample=False, |
|
set_alpha_to_one=False, |
|
prediction_type=prediction_type, |
|
) |
|
|
|
scheduler.register_to_config(clip_sample=False) |
|
|
|
if scheduler_type == "pndm": |
|
config = dict(scheduler.config) |
|
config["skip_prk_steps"] = True |
|
scheduler = PNDMScheduler.from_config(config) |
|
elif scheduler_type == "lms": |
|
scheduler = LMSDiscreteScheduler.from_config(scheduler.config) |
|
elif scheduler_type == "heun": |
|
scheduler = HeunDiscreteScheduler.from_config(scheduler.config) |
|
elif scheduler_type == "euler": |
|
scheduler = EulerDiscreteScheduler.from_config(scheduler.config) |
|
elif scheduler_type == "euler-ancestral": |
|
scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler.config) |
|
elif scheduler_type == "dpm": |
|
scheduler = DPMSolverMultistepScheduler.from_config(scheduler.config) |
|
elif scheduler_type == "ddim": |
|
scheduler = scheduler |
|
else: |
|
raise ValueError(f"Scheduler of type {scheduler_type} doesn't exist!") |
|
|
|
|
|
unet_config = create_unet_diffusers_config(original_config, image_size=image_size) |
|
unet = UNet2DConditionModel(**unet_config) |
|
|
|
converted_unet_checkpoint = convert_ldm_unet_checkpoint( |
|
checkpoint, unet_config, path=checkpoint_path, extract_ema=extract_ema |
|
) |
|
|
|
unet.load_state_dict(converted_unet_checkpoint) |
|
|
|
|
|
vae_config = create_vae_diffusers_config(original_config, checkpoint=checkpoint, image_size=image_size) |
|
converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config) |
|
|
|
vae = AutoencoderKL(**vae_config) |
|
vae.load_state_dict(converted_vae_checkpoint) |
|
|
|
|
|
|
|
config = ClapConfig.from_pretrained("laion/clap-htsat-unfused") |
|
config.audio_config.update( |
|
{ |
|
"patch_embeds_hidden_size": 128, |
|
"hidden_size": 1024, |
|
"depths": [2, 2, 12, 2], |
|
} |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained("laion/clap-htsat-unfused") |
|
feature_extractor = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused") |
|
|
|
converted_text_model = convert_open_clap_checkpoint(checkpoint) |
|
text_model = ClapModel(config) |
|
|
|
missing_keys, unexpected_keys = text_model.load_state_dict(converted_text_model, strict=False) |
|
|
|
missing_keys = list(set(missing_keys) - set(CLAP_EXPECTED_MISSING_KEYS)) |
|
|
|
if len(unexpected_keys) > 0: |
|
raise ValueError(f"Unexpected keys when loading CLAP model: {unexpected_keys}") |
|
|
|
if len(missing_keys) > 0: |
|
raise ValueError(f"Missing keys when loading CLAP model: {missing_keys}") |
|
|
|
|
|
vocoder_config = create_transformers_vocoder_config(original_config) |
|
vocoder_config = SpeechT5HifiGanConfig(**vocoder_config) |
|
converted_vocoder_checkpoint = convert_hifigan_checkpoint(checkpoint, vocoder_config) |
|
|
|
vocoder = SpeechT5HifiGan(vocoder_config) |
|
vocoder.load_state_dict(converted_vocoder_checkpoint) |
|
|
|
|
|
pipe = MusicLDMPipeline( |
|
vae=vae, |
|
text_encoder=text_model, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
scheduler=scheduler, |
|
vocoder=vocoder, |
|
feature_extractor=feature_extractor, |
|
) |
|
|
|
return pipe |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument( |
|
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." |
|
) |
|
parser.add_argument( |
|
"--original_config_file", |
|
default=None, |
|
type=str, |
|
help="The YAML config file corresponding to the original architecture.", |
|
) |
|
parser.add_argument( |
|
"--num_in_channels", |
|
default=None, |
|
type=int, |
|
help="The number of input channels. If `None` number of input channels will be automatically inferred.", |
|
) |
|
parser.add_argument( |
|
"--model_channels", |
|
default=None, |
|
type=int, |
|
help="The number of UNet model channels. If `None`, it will be automatically inferred from the config. Override" |
|
" to 128 for the small checkpoints, 192 for the medium checkpoints and 256 for the large.", |
|
) |
|
parser.add_argument( |
|
"--num_head_channels", |
|
default=None, |
|
type=int, |
|
help="The number of UNet head channels. If `None`, it will be automatically inferred from the config. Override" |
|
" to 32 for the small and medium checkpoints, and 64 for the large.", |
|
) |
|
parser.add_argument( |
|
"--scheduler_type", |
|
default="ddim", |
|
type=str, |
|
help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']", |
|
) |
|
parser.add_argument( |
|
"--image_size", |
|
default=None, |
|
type=int, |
|
help=("The image size that the model was trained on."), |
|
) |
|
parser.add_argument( |
|
"--prediction_type", |
|
default=None, |
|
type=str, |
|
help=("The prediction type that the model was trained on."), |
|
) |
|
parser.add_argument( |
|
"--extract_ema", |
|
action="store_true", |
|
help=( |
|
"Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" |
|
" or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" |
|
" higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." |
|
), |
|
) |
|
parser.add_argument( |
|
"--from_safetensors", |
|
action="store_true", |
|
help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.", |
|
) |
|
parser.add_argument( |
|
"--to_safetensors", |
|
action="store_true", |
|
help="Whether to store pipeline in safetensors format or not.", |
|
) |
|
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") |
|
parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") |
|
args = parser.parse_args() |
|
|
|
pipe = load_pipeline_from_original_MusicLDM_ckpt( |
|
checkpoint_path=args.checkpoint_path, |
|
original_config_file=args.original_config_file, |
|
image_size=args.image_size, |
|
prediction_type=args.prediction_type, |
|
extract_ema=args.extract_ema, |
|
scheduler_type=args.scheduler_type, |
|
num_in_channels=args.num_in_channels, |
|
model_channels=args.model_channels, |
|
num_head_channels=args.num_head_channels, |
|
from_safetensors=args.from_safetensors, |
|
device=args.device, |
|
) |
|
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) |
|
|