stable-diffusion-v1-5-tst_chair / diffusers /scripts /change_naming_configs_and_checkpoints.py
NadaGh's picture
End of training
3a25a0a verified
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Conversion script for the LDM checkpoints."""
import argparse
import json
import os
import torch
from transformers.file_utils import has_file
from diffusers import UNet2DConditionModel, UNet2DModel
do_only_config = False
do_only_weights = True
do_only_renaming = False
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--repo_path",
default=None,
type=str,
required=True,
help="The config json file corresponding to the architecture.",
)
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
args = parser.parse_args()
config_parameters_to_change = {
"image_size": "sample_size",
"num_res_blocks": "layers_per_block",
"block_channels": "block_out_channels",
"down_blocks": "down_block_types",
"up_blocks": "up_block_types",
"downscale_freq_shift": "freq_shift",
"resnet_num_groups": "norm_num_groups",
"resnet_act_fn": "act_fn",
"resnet_eps": "norm_eps",
"num_head_channels": "attention_head_dim",
}
key_parameters_to_change = {
"time_steps": "time_proj",
"mid": "mid_block",
"downsample_blocks": "down_blocks",
"upsample_blocks": "up_blocks",
}
subfolder = "" if has_file(args.repo_path, "config.json") else "unet"
with open(os.path.join(args.repo_path, subfolder, "config.json"), "r", encoding="utf-8") as reader:
text = reader.read()
config = json.loads(text)
if do_only_config:
for key in config_parameters_to_change.keys():
config.pop(key, None)
if has_file(args.repo_path, "config.json"):
model = UNet2DModel(**config)
else:
class_name = UNet2DConditionModel if "ldm-text2im-large-256" in args.repo_path else UNet2DModel
model = class_name(**config)
if do_only_config:
model.save_config(os.path.join(args.repo_path, subfolder))
config = dict(model.config)
if do_only_renaming:
for key, value in config_parameters_to_change.items():
if key in config:
config[value] = config[key]
del config[key]
config["down_block_types"] = [k.replace("UNetRes", "") for k in config["down_block_types"]]
config["up_block_types"] = [k.replace("UNetRes", "") for k in config["up_block_types"]]
if do_only_weights:
state_dict = torch.load(os.path.join(args.repo_path, subfolder, "diffusion_pytorch_model.bin"))
new_state_dict = {}
for param_key, param_value in state_dict.items():
if param_key.endswith(".op.bias") or param_key.endswith(".op.weight"):
continue
has_changed = False
for key, new_key in key_parameters_to_change.items():
if not has_changed and param_key.split(".")[0] == key:
new_state_dict[".".join([new_key] + param_key.split(".")[1:])] = param_value
has_changed = True
if not has_changed:
new_state_dict[param_key] = param_value
model.load_state_dict(new_state_dict)
model.save_pretrained(os.path.join(args.repo_path, subfolder))