|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Conversion script for the LDM checkpoints.""" |
|
|
|
import argparse |
|
import json |
|
import os |
|
|
|
import torch |
|
from transformers.file_utils import has_file |
|
|
|
from diffusers import UNet2DConditionModel, UNet2DModel |
|
|
|
|
|
do_only_config = False |
|
do_only_weights = True |
|
do_only_renaming = False |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument( |
|
"--repo_path", |
|
default=None, |
|
type=str, |
|
required=True, |
|
help="The config json file corresponding to the architecture.", |
|
) |
|
|
|
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") |
|
|
|
args = parser.parse_args() |
|
|
|
config_parameters_to_change = { |
|
"image_size": "sample_size", |
|
"num_res_blocks": "layers_per_block", |
|
"block_channels": "block_out_channels", |
|
"down_blocks": "down_block_types", |
|
"up_blocks": "up_block_types", |
|
"downscale_freq_shift": "freq_shift", |
|
"resnet_num_groups": "norm_num_groups", |
|
"resnet_act_fn": "act_fn", |
|
"resnet_eps": "norm_eps", |
|
"num_head_channels": "attention_head_dim", |
|
} |
|
|
|
key_parameters_to_change = { |
|
"time_steps": "time_proj", |
|
"mid": "mid_block", |
|
"downsample_blocks": "down_blocks", |
|
"upsample_blocks": "up_blocks", |
|
} |
|
|
|
subfolder = "" if has_file(args.repo_path, "config.json") else "unet" |
|
|
|
with open(os.path.join(args.repo_path, subfolder, "config.json"), "r", encoding="utf-8") as reader: |
|
text = reader.read() |
|
config = json.loads(text) |
|
|
|
if do_only_config: |
|
for key in config_parameters_to_change.keys(): |
|
config.pop(key, None) |
|
|
|
if has_file(args.repo_path, "config.json"): |
|
model = UNet2DModel(**config) |
|
else: |
|
class_name = UNet2DConditionModel if "ldm-text2im-large-256" in args.repo_path else UNet2DModel |
|
model = class_name(**config) |
|
|
|
if do_only_config: |
|
model.save_config(os.path.join(args.repo_path, subfolder)) |
|
|
|
config = dict(model.config) |
|
|
|
if do_only_renaming: |
|
for key, value in config_parameters_to_change.items(): |
|
if key in config: |
|
config[value] = config[key] |
|
del config[key] |
|
|
|
config["down_block_types"] = [k.replace("UNetRes", "") for k in config["down_block_types"]] |
|
config["up_block_types"] = [k.replace("UNetRes", "") for k in config["up_block_types"]] |
|
|
|
if do_only_weights: |
|
state_dict = torch.load(os.path.join(args.repo_path, subfolder, "diffusion_pytorch_model.bin")) |
|
|
|
new_state_dict = {} |
|
for param_key, param_value in state_dict.items(): |
|
if param_key.endswith(".op.bias") or param_key.endswith(".op.weight"): |
|
continue |
|
has_changed = False |
|
for key, new_key in key_parameters_to_change.items(): |
|
if not has_changed and param_key.split(".")[0] == key: |
|
new_state_dict[".".join([new_key] + param_key.split(".")[1:])] = param_value |
|
has_changed = True |
|
if not has_changed: |
|
new_state_dict[param_key] = param_value |
|
|
|
model.load_state_dict(new_state_dict) |
|
model.save_pretrained(os.path.join(args.repo_path, subfolder)) |
|
|