|
import os |
|
import sys |
|
|
|
import torch |
|
|
|
from diffusers import ( |
|
AutoPipelineForImage2Image, |
|
AutoPipelineForInpainting, |
|
AutoPipelineForText2Image, |
|
ControlNetModel, |
|
LCMScheduler, |
|
StableDiffusionAdapterPipeline, |
|
StableDiffusionControlNetPipeline, |
|
StableDiffusionXLAdapterPipeline, |
|
StableDiffusionXLControlNetPipeline, |
|
T2IAdapter, |
|
WuerstchenCombinedPipeline, |
|
) |
|
from diffusers.utils import load_image |
|
|
|
|
|
sys.path.append(".") |
|
|
|
from utils import ( |
|
BASE_PATH, |
|
PROMPT, |
|
BenchmarkInfo, |
|
benchmark_fn, |
|
bytes_to_giga_bytes, |
|
flush, |
|
generate_csv_dict, |
|
write_to_csv, |
|
) |
|
|
|
|
|
RESOLUTION_MAPPING = { |
|
"runwayml/stable-diffusion-v1-5": (512, 512), |
|
"lllyasviel/sd-controlnet-canny": (512, 512), |
|
"diffusers/controlnet-canny-sdxl-1.0": (1024, 1024), |
|
"TencentARC/t2iadapter_canny_sd14v1": (512, 512), |
|
"TencentARC/t2i-adapter-canny-sdxl-1.0": (1024, 1024), |
|
"stabilityai/stable-diffusion-2-1": (768, 768), |
|
"stabilityai/stable-diffusion-xl-base-1.0": (1024, 1024), |
|
"stabilityai/stable-diffusion-xl-refiner-1.0": (1024, 1024), |
|
"stabilityai/sdxl-turbo": (512, 512), |
|
} |
|
|
|
|
|
class BaseBenchmak: |
|
pipeline_class = None |
|
|
|
def __init__(self, args): |
|
super().__init__() |
|
|
|
def run_inference(self, args): |
|
raise NotImplementedError |
|
|
|
def benchmark(self, args): |
|
raise NotImplementedError |
|
|
|
def get_result_filepath(self, args): |
|
pipeline_class_name = str(self.pipe.__class__.__name__) |
|
name = ( |
|
args.ckpt.replace("/", "_") |
|
+ "_" |
|
+ pipeline_class_name |
|
+ f"-bs@{args.batch_size}-steps@{args.num_inference_steps}-mco@{args.model_cpu_offload}-compile@{args.run_compile}.csv" |
|
) |
|
filepath = os.path.join(BASE_PATH, name) |
|
return filepath |
|
|
|
|
|
class TextToImageBenchmark(BaseBenchmak): |
|
pipeline_class = AutoPipelineForText2Image |
|
|
|
def __init__(self, args): |
|
pipe = self.pipeline_class.from_pretrained(args.ckpt, torch_dtype=torch.float16) |
|
pipe = pipe.to("cuda") |
|
|
|
if args.run_compile: |
|
if not isinstance(pipe, WuerstchenCombinedPipeline): |
|
pipe.unet.to(memory_format=torch.channels_last) |
|
print("Run torch compile") |
|
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) |
|
|
|
if hasattr(pipe, "movq") and getattr(pipe, "movq", None) is not None: |
|
pipe.movq.to(memory_format=torch.channels_last) |
|
pipe.movq = torch.compile(pipe.movq, mode="reduce-overhead", fullgraph=True) |
|
else: |
|
print("Run torch compile") |
|
pipe.decoder = torch.compile(pipe.decoder, mode="reduce-overhead", fullgraph=True) |
|
pipe.vqgan = torch.compile(pipe.vqgan, mode="reduce-overhead", fullgraph=True) |
|
|
|
pipe.set_progress_bar_config(disable=True) |
|
self.pipe = pipe |
|
|
|
def run_inference(self, pipe, args): |
|
_ = pipe( |
|
prompt=PROMPT, |
|
num_inference_steps=args.num_inference_steps, |
|
num_images_per_prompt=args.batch_size, |
|
) |
|
|
|
def benchmark(self, args): |
|
flush() |
|
|
|
print(f"[INFO] {self.pipe.__class__.__name__}: Running benchmark with: {vars(args)}\n") |
|
|
|
time = benchmark_fn(self.run_inference, self.pipe, args) |
|
memory = bytes_to_giga_bytes(torch.cuda.max_memory_allocated()) |
|
benchmark_info = BenchmarkInfo(time=time, memory=memory) |
|
|
|
pipeline_class_name = str(self.pipe.__class__.__name__) |
|
flush() |
|
csv_dict = generate_csv_dict( |
|
pipeline_cls=pipeline_class_name, ckpt=args.ckpt, args=args, benchmark_info=benchmark_info |
|
) |
|
filepath = self.get_result_filepath(args) |
|
write_to_csv(filepath, csv_dict) |
|
print(f"Logs written to: {filepath}") |
|
flush() |
|
|
|
|
|
class TurboTextToImageBenchmark(TextToImageBenchmark): |
|
def __init__(self, args): |
|
super().__init__(args) |
|
|
|
def run_inference(self, pipe, args): |
|
_ = pipe( |
|
prompt=PROMPT, |
|
num_inference_steps=args.num_inference_steps, |
|
num_images_per_prompt=args.batch_size, |
|
guidance_scale=0.0, |
|
) |
|
|
|
|
|
class LCMLoRATextToImageBenchmark(TextToImageBenchmark): |
|
lora_id = "latent-consistency/lcm-lora-sdxl" |
|
|
|
def __init__(self, args): |
|
super().__init__(args) |
|
self.pipe.load_lora_weights(self.lora_id) |
|
self.pipe.fuse_lora() |
|
self.pipe.unload_lora_weights() |
|
self.pipe.scheduler = LCMScheduler.from_config(self.pipe.scheduler.config) |
|
|
|
def get_result_filepath(self, args): |
|
pipeline_class_name = str(self.pipe.__class__.__name__) |
|
name = ( |
|
self.lora_id.replace("/", "_") |
|
+ "_" |
|
+ pipeline_class_name |
|
+ f"-bs@{args.batch_size}-steps@{args.num_inference_steps}-mco@{args.model_cpu_offload}-compile@{args.run_compile}.csv" |
|
) |
|
filepath = os.path.join(BASE_PATH, name) |
|
return filepath |
|
|
|
def run_inference(self, pipe, args): |
|
_ = pipe( |
|
prompt=PROMPT, |
|
num_inference_steps=args.num_inference_steps, |
|
num_images_per_prompt=args.batch_size, |
|
guidance_scale=1.0, |
|
) |
|
|
|
def benchmark(self, args): |
|
flush() |
|
|
|
print(f"[INFO] {self.pipe.__class__.__name__}: Running benchmark with: {vars(args)}\n") |
|
|
|
time = benchmark_fn(self.run_inference, self.pipe, args) |
|
memory = bytes_to_giga_bytes(torch.cuda.max_memory_allocated()) |
|
benchmark_info = BenchmarkInfo(time=time, memory=memory) |
|
|
|
pipeline_class_name = str(self.pipe.__class__.__name__) |
|
flush() |
|
csv_dict = generate_csv_dict( |
|
pipeline_cls=pipeline_class_name, ckpt=self.lora_id, args=args, benchmark_info=benchmark_info |
|
) |
|
filepath = self.get_result_filepath(args) |
|
write_to_csv(filepath, csv_dict) |
|
print(f"Logs written to: {filepath}") |
|
flush() |
|
|
|
|
|
class ImageToImageBenchmark(TextToImageBenchmark): |
|
pipeline_class = AutoPipelineForImage2Image |
|
url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/benchmarking/1665_Girl_with_a_Pearl_Earring.jpg" |
|
image = load_image(url).convert("RGB") |
|
|
|
def __init__(self, args): |
|
super().__init__(args) |
|
self.image = self.image.resize(RESOLUTION_MAPPING[args.ckpt]) |
|
|
|
def run_inference(self, pipe, args): |
|
_ = pipe( |
|
prompt=PROMPT, |
|
image=self.image, |
|
num_inference_steps=args.num_inference_steps, |
|
num_images_per_prompt=args.batch_size, |
|
) |
|
|
|
|
|
class TurboImageToImageBenchmark(ImageToImageBenchmark): |
|
def __init__(self, args): |
|
super().__init__(args) |
|
|
|
def run_inference(self, pipe, args): |
|
_ = pipe( |
|
prompt=PROMPT, |
|
image=self.image, |
|
num_inference_steps=args.num_inference_steps, |
|
num_images_per_prompt=args.batch_size, |
|
guidance_scale=0.0, |
|
strength=0.5, |
|
) |
|
|
|
|
|
class InpaintingBenchmark(ImageToImageBenchmark): |
|
pipeline_class = AutoPipelineForInpainting |
|
mask_url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/benchmarking/overture-creations-5sI6fQgYIuo_mask.png" |
|
mask = load_image(mask_url).convert("RGB") |
|
|
|
def __init__(self, args): |
|
super().__init__(args) |
|
self.image = self.image.resize(RESOLUTION_MAPPING[args.ckpt]) |
|
self.mask = self.mask.resize(RESOLUTION_MAPPING[args.ckpt]) |
|
|
|
def run_inference(self, pipe, args): |
|
_ = pipe( |
|
prompt=PROMPT, |
|
image=self.image, |
|
mask_image=self.mask, |
|
num_inference_steps=args.num_inference_steps, |
|
num_images_per_prompt=args.batch_size, |
|
) |
|
|
|
|
|
class IPAdapterTextToImageBenchmark(TextToImageBenchmark): |
|
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/load_neg_embed.png" |
|
image = load_image(url) |
|
|
|
def __init__(self, args): |
|
pipe = self.pipeline_class.from_pretrained(args.ckpt, torch_dtype=torch.float16).to("cuda") |
|
pipe.load_ip_adapter( |
|
args.ip_adapter_id[0], |
|
subfolder="models" if "sdxl" not in args.ip_adapter_id[1] else "sdxl_models", |
|
weight_name=args.ip_adapter_id[1], |
|
) |
|
|
|
if args.run_compile: |
|
pipe.unet.to(memory_format=torch.channels_last) |
|
print("Run torch compile") |
|
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) |
|
|
|
pipe.set_progress_bar_config(disable=True) |
|
self.pipe = pipe |
|
|
|
def run_inference(self, pipe, args): |
|
_ = pipe( |
|
prompt=PROMPT, |
|
ip_adapter_image=self.image, |
|
num_inference_steps=args.num_inference_steps, |
|
num_images_per_prompt=args.batch_size, |
|
) |
|
|
|
|
|
class ControlNetBenchmark(TextToImageBenchmark): |
|
pipeline_class = StableDiffusionControlNetPipeline |
|
aux_network_class = ControlNetModel |
|
root_ckpt = "runwayml/stable-diffusion-v1-5" |
|
|
|
url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/benchmarking/canny_image_condition.png" |
|
image = load_image(url).convert("RGB") |
|
|
|
def __init__(self, args): |
|
aux_network = self.aux_network_class.from_pretrained(args.ckpt, torch_dtype=torch.float16) |
|
pipe = self.pipeline_class.from_pretrained(self.root_ckpt, controlnet=aux_network, torch_dtype=torch.float16) |
|
pipe = pipe.to("cuda") |
|
|
|
pipe.set_progress_bar_config(disable=True) |
|
self.pipe = pipe |
|
|
|
if args.run_compile: |
|
pipe.unet.to(memory_format=torch.channels_last) |
|
pipe.controlnet.to(memory_format=torch.channels_last) |
|
|
|
print("Run torch compile") |
|
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) |
|
pipe.controlnet = torch.compile(pipe.controlnet, mode="reduce-overhead", fullgraph=True) |
|
|
|
self.image = self.image.resize(RESOLUTION_MAPPING[args.ckpt]) |
|
|
|
def run_inference(self, pipe, args): |
|
_ = pipe( |
|
prompt=PROMPT, |
|
image=self.image, |
|
num_inference_steps=args.num_inference_steps, |
|
num_images_per_prompt=args.batch_size, |
|
) |
|
|
|
|
|
class ControlNetSDXLBenchmark(ControlNetBenchmark): |
|
pipeline_class = StableDiffusionXLControlNetPipeline |
|
root_ckpt = "stabilityai/stable-diffusion-xl-base-1.0" |
|
|
|
def __init__(self, args): |
|
super().__init__(args) |
|
|
|
|
|
class T2IAdapterBenchmark(ControlNetBenchmark): |
|
pipeline_class = StableDiffusionAdapterPipeline |
|
aux_network_class = T2IAdapter |
|
root_ckpt = "CompVis/stable-diffusion-v1-4" |
|
|
|
url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/benchmarking/canny_for_adapter.png" |
|
image = load_image(url).convert("L") |
|
|
|
def __init__(self, args): |
|
aux_network = self.aux_network_class.from_pretrained(args.ckpt, torch_dtype=torch.float16) |
|
pipe = self.pipeline_class.from_pretrained(self.root_ckpt, adapter=aux_network, torch_dtype=torch.float16) |
|
pipe = pipe.to("cuda") |
|
|
|
pipe.set_progress_bar_config(disable=True) |
|
self.pipe = pipe |
|
|
|
if args.run_compile: |
|
pipe.unet.to(memory_format=torch.channels_last) |
|
pipe.adapter.to(memory_format=torch.channels_last) |
|
|
|
print("Run torch compile") |
|
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) |
|
pipe.adapter = torch.compile(pipe.adapter, mode="reduce-overhead", fullgraph=True) |
|
|
|
self.image = self.image.resize(RESOLUTION_MAPPING[args.ckpt]) |
|
|
|
|
|
class T2IAdapterSDXLBenchmark(T2IAdapterBenchmark): |
|
pipeline_class = StableDiffusionXLAdapterPipeline |
|
root_ckpt = "stabilityai/stable-diffusion-xl-base-1.0" |
|
|
|
url = "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/benchmarking/canny_for_adapter_sdxl.png" |
|
image = load_image(url) |
|
|
|
def __init__(self, args): |
|
super().__init__(args) |
|
|