|
import tempfile |
|
|
|
import torch |
|
|
|
from diffusers import PNDMScheduler |
|
|
|
from .test_schedulers import SchedulerCommonTest |
|
|
|
|
|
class PNDMSchedulerTest(SchedulerCommonTest): |
|
scheduler_classes = (PNDMScheduler,) |
|
forward_default_kwargs = (("num_inference_steps", 50),) |
|
|
|
def get_scheduler_config(self, **kwargs): |
|
config = { |
|
"num_train_timesteps": 1000, |
|
"beta_start": 0.0001, |
|
"beta_end": 0.02, |
|
"beta_schedule": "linear", |
|
} |
|
|
|
config.update(**kwargs) |
|
return config |
|
|
|
def check_over_configs(self, time_step=0, **config): |
|
kwargs = dict(self.forward_default_kwargs) |
|
num_inference_steps = kwargs.pop("num_inference_steps", None) |
|
sample = self.dummy_sample |
|
residual = 0.1 * sample |
|
dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] |
|
|
|
for scheduler_class in self.scheduler_classes: |
|
scheduler_config = self.get_scheduler_config(**config) |
|
scheduler = scheduler_class(**scheduler_config) |
|
scheduler.set_timesteps(num_inference_steps) |
|
|
|
scheduler.ets = dummy_past_residuals[:] |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
scheduler.save_config(tmpdirname) |
|
new_scheduler = scheduler_class.from_pretrained(tmpdirname) |
|
new_scheduler.set_timesteps(num_inference_steps) |
|
|
|
new_scheduler.ets = dummy_past_residuals[:] |
|
|
|
output = scheduler.step_prk(residual, time_step, sample, **kwargs).prev_sample |
|
new_output = new_scheduler.step_prk(residual, time_step, sample, **kwargs).prev_sample |
|
|
|
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" |
|
|
|
output = scheduler.step_plms(residual, time_step, sample, **kwargs).prev_sample |
|
new_output = new_scheduler.step_plms(residual, time_step, sample, **kwargs).prev_sample |
|
|
|
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" |
|
|
|
def test_from_save_pretrained(self): |
|
pass |
|
|
|
def check_over_forward(self, time_step=0, **forward_kwargs): |
|
kwargs = dict(self.forward_default_kwargs) |
|
num_inference_steps = kwargs.pop("num_inference_steps", None) |
|
sample = self.dummy_sample |
|
residual = 0.1 * sample |
|
dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] |
|
|
|
for scheduler_class in self.scheduler_classes: |
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
scheduler.set_timesteps(num_inference_steps) |
|
|
|
|
|
scheduler.ets = dummy_past_residuals[:] |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
scheduler.save_config(tmpdirname) |
|
new_scheduler = scheduler_class.from_pretrained(tmpdirname) |
|
|
|
new_scheduler.set_timesteps(num_inference_steps) |
|
|
|
|
|
new_scheduler.ets = dummy_past_residuals[:] |
|
|
|
output = scheduler.step_prk(residual, time_step, sample, **kwargs).prev_sample |
|
new_output = new_scheduler.step_prk(residual, time_step, sample, **kwargs).prev_sample |
|
|
|
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" |
|
|
|
output = scheduler.step_plms(residual, time_step, sample, **kwargs).prev_sample |
|
new_output = new_scheduler.step_plms(residual, time_step, sample, **kwargs).prev_sample |
|
|
|
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" |
|
|
|
def full_loop(self, **config): |
|
scheduler_class = self.scheduler_classes[0] |
|
scheduler_config = self.get_scheduler_config(**config) |
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
num_inference_steps = 10 |
|
model = self.dummy_model() |
|
sample = self.dummy_sample_deter |
|
scheduler.set_timesteps(num_inference_steps) |
|
|
|
for i, t in enumerate(scheduler.prk_timesteps): |
|
residual = model(sample, t) |
|
sample = scheduler.step_prk(residual, t, sample).prev_sample |
|
|
|
for i, t in enumerate(scheduler.plms_timesteps): |
|
residual = model(sample, t) |
|
sample = scheduler.step_plms(residual, t, sample).prev_sample |
|
|
|
return sample |
|
|
|
def test_step_shape(self): |
|
kwargs = dict(self.forward_default_kwargs) |
|
|
|
num_inference_steps = kwargs.pop("num_inference_steps", None) |
|
|
|
for scheduler_class in self.scheduler_classes: |
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
sample = self.dummy_sample |
|
residual = 0.1 * sample |
|
|
|
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): |
|
scheduler.set_timesteps(num_inference_steps) |
|
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): |
|
kwargs["num_inference_steps"] = num_inference_steps |
|
|
|
|
|
dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] |
|
scheduler.ets = dummy_past_residuals[:] |
|
|
|
output_0 = scheduler.step_prk(residual, 0, sample, **kwargs).prev_sample |
|
output_1 = scheduler.step_prk(residual, 1, sample, **kwargs).prev_sample |
|
|
|
self.assertEqual(output_0.shape, sample.shape) |
|
self.assertEqual(output_0.shape, output_1.shape) |
|
|
|
output_0 = scheduler.step_plms(residual, 0, sample, **kwargs).prev_sample |
|
output_1 = scheduler.step_plms(residual, 1, sample, **kwargs).prev_sample |
|
|
|
self.assertEqual(output_0.shape, sample.shape) |
|
self.assertEqual(output_0.shape, output_1.shape) |
|
|
|
def test_timesteps(self): |
|
for timesteps in [100, 1000]: |
|
self.check_over_configs(num_train_timesteps=timesteps) |
|
|
|
def test_steps_offset(self): |
|
for steps_offset in [0, 1]: |
|
self.check_over_configs(steps_offset=steps_offset) |
|
|
|
scheduler_class = self.scheduler_classes[0] |
|
scheduler_config = self.get_scheduler_config(steps_offset=1) |
|
scheduler = scheduler_class(**scheduler_config) |
|
scheduler.set_timesteps(10) |
|
assert torch.equal( |
|
scheduler.timesteps, |
|
torch.LongTensor( |
|
[901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] |
|
), |
|
) |
|
|
|
def test_betas(self): |
|
for beta_start, beta_end in zip([0.0001, 0.001], [0.002, 0.02]): |
|
self.check_over_configs(beta_start=beta_start, beta_end=beta_end) |
|
|
|
def test_schedules(self): |
|
for schedule in ["linear", "squaredcos_cap_v2"]: |
|
self.check_over_configs(beta_schedule=schedule) |
|
|
|
def test_prediction_type(self): |
|
for prediction_type in ["epsilon", "v_prediction"]: |
|
self.check_over_configs(prediction_type=prediction_type) |
|
|
|
def test_time_indices(self): |
|
for t in [1, 5, 10]: |
|
self.check_over_forward(time_step=t) |
|
|
|
def test_inference_steps(self): |
|
for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100]): |
|
self.check_over_forward(num_inference_steps=num_inference_steps) |
|
|
|
def test_pow_of_3_inference_steps(self): |
|
|
|
num_inference_steps = 27 |
|
|
|
for scheduler_class in self.scheduler_classes: |
|
sample = self.dummy_sample |
|
residual = 0.1 * sample |
|
|
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
scheduler.set_timesteps(num_inference_steps) |
|
|
|
|
|
for i, t in enumerate(scheduler.prk_timesteps[:2]): |
|
sample = scheduler.step_prk(residual, t, sample).prev_sample |
|
|
|
def test_inference_plms_no_past_residuals(self): |
|
with self.assertRaises(ValueError): |
|
scheduler_class = self.scheduler_classes[0] |
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
scheduler.step_plms(self.dummy_sample, 1, self.dummy_sample).prev_sample |
|
|
|
def test_full_loop_no_noise(self): |
|
sample = self.full_loop() |
|
result_sum = torch.sum(torch.abs(sample)) |
|
result_mean = torch.mean(torch.abs(sample)) |
|
|
|
assert abs(result_sum.item() - 198.1318) < 1e-2 |
|
assert abs(result_mean.item() - 0.2580) < 1e-3 |
|
|
|
def test_full_loop_with_v_prediction(self): |
|
sample = self.full_loop(prediction_type="v_prediction") |
|
result_sum = torch.sum(torch.abs(sample)) |
|
result_mean = torch.mean(torch.abs(sample)) |
|
|
|
assert abs(result_sum.item() - 67.3986) < 1e-2 |
|
assert abs(result_mean.item() - 0.0878) < 1e-3 |
|
|
|
def test_full_loop_with_set_alpha_to_one(self): |
|
|
|
sample = self.full_loop(set_alpha_to_one=True, beta_start=0.01) |
|
result_sum = torch.sum(torch.abs(sample)) |
|
result_mean = torch.mean(torch.abs(sample)) |
|
|
|
assert abs(result_sum.item() - 230.0399) < 1e-2 |
|
assert abs(result_mean.item() - 0.2995) < 1e-3 |
|
|
|
def test_full_loop_with_no_set_alpha_to_one(self): |
|
|
|
sample = self.full_loop(set_alpha_to_one=False, beta_start=0.01) |
|
result_sum = torch.sum(torch.abs(sample)) |
|
result_mean = torch.mean(torch.abs(sample)) |
|
|
|
assert abs(result_sum.item() - 186.9482) < 1e-2 |
|
assert abs(result_mean.item() - 0.2434) < 1e-3 |
|
|