NadaGh's picture
End of training
3a25a0a verified
raw
history blame
12.3 kB
import tempfile
from typing import Dict, List, Tuple
import torch
from diffusers import LCMScheduler
from diffusers.utils.testing_utils import torch_device
from .test_schedulers import SchedulerCommonTest
class LCMSchedulerTest(SchedulerCommonTest):
scheduler_classes = (LCMScheduler,)
forward_default_kwargs = (("num_inference_steps", 10),)
def get_scheduler_config(self, **kwargs):
config = {
"num_train_timesteps": 1000,
"beta_start": 0.00085,
"beta_end": 0.0120,
"beta_schedule": "scaled_linear",
"prediction_type": "epsilon",
}
config.update(**kwargs)
return config
@property
def default_valid_timestep(self):
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
scheduler_config = self.get_scheduler_config()
scheduler = self.scheduler_classes[0](**scheduler_config)
scheduler.set_timesteps(num_inference_steps)
timestep = scheduler.timesteps[-1]
return timestep
def test_timesteps(self):
for timesteps in [100, 500, 1000]:
# 0 is not guaranteed to be in the timestep schedule, but timesteps - 1 is
self.check_over_configs(time_step=timesteps - 1, num_train_timesteps=timesteps)
def test_betas(self):
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]):
self.check_over_configs(time_step=self.default_valid_timestep, beta_start=beta_start, beta_end=beta_end)
def test_schedules(self):
for schedule in ["linear", "scaled_linear", "squaredcos_cap_v2"]:
self.check_over_configs(time_step=self.default_valid_timestep, beta_schedule=schedule)
def test_prediction_type(self):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(time_step=self.default_valid_timestep, prediction_type=prediction_type)
def test_clip_sample(self):
for clip_sample in [True, False]:
self.check_over_configs(time_step=self.default_valid_timestep, clip_sample=clip_sample)
def test_thresholding(self):
self.check_over_configs(time_step=self.default_valid_timestep, thresholding=False)
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(
time_step=self.default_valid_timestep,
thresholding=True,
prediction_type=prediction_type,
sample_max_value=threshold,
)
def test_time_indices(self):
# Get default timestep schedule.
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
scheduler_config = self.get_scheduler_config()
scheduler = self.scheduler_classes[0](**scheduler_config)
scheduler.set_timesteps(num_inference_steps)
timesteps = scheduler.timesteps
for t in timesteps:
self.check_over_forward(time_step=t)
def test_inference_steps(self):
# Hardcoded for now
for t, num_inference_steps in zip([99, 39, 39, 19], [10, 25, 26, 50]):
self.check_over_forward(time_step=t, num_inference_steps=num_inference_steps)
# Override test_add_noise_device because the hardcoded num_inference_steps of 100 doesn't work
# for LCMScheduler under default settings
def test_add_noise_device(self, num_inference_steps=10):
for scheduler_class in self.scheduler_classes:
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
scheduler.set_timesteps(num_inference_steps)
sample = self.dummy_sample.to(torch_device)
scaled_sample = scheduler.scale_model_input(sample, 0.0)
self.assertEqual(sample.shape, scaled_sample.shape)
noise = torch.randn_like(scaled_sample).to(torch_device)
t = scheduler.timesteps[5][None]
noised = scheduler.add_noise(scaled_sample, noise, t)
self.assertEqual(noised.shape, scaled_sample.shape)
# Override test_from_save_pretrained because it hardcodes a timestep of 1
def test_from_save_pretrained(self):
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
for scheduler_class in self.scheduler_classes:
timestep = self.default_valid_timestep
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
sample = self.dummy_sample
residual = 0.1 * sample
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(tmpdirname)
new_scheduler = scheduler_class.from_pretrained(tmpdirname)
scheduler.set_timesteps(num_inference_steps)
new_scheduler.set_timesteps(num_inference_steps)
kwargs["generator"] = torch.manual_seed(0)
output = scheduler.step(residual, timestep, sample, **kwargs).prev_sample
kwargs["generator"] = torch.manual_seed(0)
new_output = new_scheduler.step(residual, timestep, sample, **kwargs).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
# Override test_step_shape because uses 0 and 1 as hardcoded timesteps
def test_step_shape(self):
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
for scheduler_class in self.scheduler_classes:
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
sample = self.dummy_sample
residual = 0.1 * sample
scheduler.set_timesteps(num_inference_steps)
timestep_0 = scheduler.timesteps[-2]
timestep_1 = scheduler.timesteps[-1]
output_0 = scheduler.step(residual, timestep_0, sample, **kwargs).prev_sample
output_1 = scheduler.step(residual, timestep_1, sample, **kwargs).prev_sample
self.assertEqual(output_0.shape, sample.shape)
self.assertEqual(output_0.shape, output_1.shape)
# Override test_set_scheduler_outputs_equivalence since it uses 0 as a hardcoded timestep
def test_scheduler_outputs_equivalence(self):
def set_nan_tensor_to_zero(t):
t[t != t] = 0
return t
def recursive_check(tuple_object, dict_object):
if isinstance(tuple_object, (List, Tuple)):
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif isinstance(tuple_object, Dict):
for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
),
msg=(
"Tuple and dict output are not equal. Difference:"
f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
),
)
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", 50)
timestep = self.default_valid_timestep
for scheduler_class in self.scheduler_classes:
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
sample = self.dummy_sample
residual = 0.1 * sample
scheduler.set_timesteps(num_inference_steps)
kwargs["generator"] = torch.manual_seed(0)
outputs_dict = scheduler.step(residual, timestep, sample, **kwargs)
scheduler.set_timesteps(num_inference_steps)
kwargs["generator"] = torch.manual_seed(0)
outputs_tuple = scheduler.step(residual, timestep, sample, return_dict=False, **kwargs)
recursive_check(outputs_tuple, outputs_dict)
def full_loop(self, num_inference_steps=10, seed=0, **config):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config(**config)
scheduler = scheduler_class(**scheduler_config)
model = self.dummy_model()
sample = self.dummy_sample_deter
generator = torch.manual_seed(seed)
scheduler.set_timesteps(num_inference_steps)
for t in scheduler.timesteps:
residual = model(sample, t)
sample = scheduler.step(residual, t, sample, generator).prev_sample
return sample
def test_full_loop_onestep(self):
sample = self.full_loop(num_inference_steps=1)
result_sum = torch.sum(torch.abs(sample))
result_mean = torch.mean(torch.abs(sample))
# TODO: get expected sum and mean
assert abs(result_sum.item() - 18.7097) < 1e-3
assert abs(result_mean.item() - 0.0244) < 1e-3
def test_full_loop_multistep(self):
sample = self.full_loop(num_inference_steps=10)
result_sum = torch.sum(torch.abs(sample))
result_mean = torch.mean(torch.abs(sample))
# TODO: get expected sum and mean
assert abs(result_sum.item() - 197.7616) < 1e-3
assert abs(result_mean.item() - 0.2575) < 1e-3
def test_custom_timesteps(self):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
timesteps = [100, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=timesteps)
scheduler_timesteps = scheduler.timesteps
for i, timestep in enumerate(scheduler_timesteps):
if i == len(timesteps) - 1:
expected_prev_t = -1
else:
expected_prev_t = timesteps[i + 1]
prev_t = scheduler.previous_timestep(timestep)
prev_t = prev_t.item()
self.assertEqual(prev_t, expected_prev_t)
def test_custom_timesteps_increasing_order(self):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
timesteps = [100, 87, 50, 51, 0]
with self.assertRaises(ValueError, msg="`custom_timesteps` must be in descending order."):
scheduler.set_timesteps(timesteps=timesteps)
def test_custom_timesteps_passing_both_num_inference_steps_and_timesteps(self):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
timesteps = [100, 87, 50, 1, 0]
num_inference_steps = len(timesteps)
with self.assertRaises(ValueError, msg="Can only pass one of `num_inference_steps` or `custom_timesteps`."):
scheduler.set_timesteps(num_inference_steps=num_inference_steps, timesteps=timesteps)
def test_custom_timesteps_too_large(self):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
timesteps = [scheduler.config.num_train_timesteps]
with self.assertRaises(
ValueError,
msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}",
):
scheduler.set_timesteps(timesteps=timesteps)