|
import tempfile |
|
from typing import Dict, List, Tuple |
|
|
|
import torch |
|
|
|
from diffusers import LCMScheduler |
|
from diffusers.utils.testing_utils import torch_device |
|
|
|
from .test_schedulers import SchedulerCommonTest |
|
|
|
|
|
class LCMSchedulerTest(SchedulerCommonTest): |
|
scheduler_classes = (LCMScheduler,) |
|
forward_default_kwargs = (("num_inference_steps", 10),) |
|
|
|
def get_scheduler_config(self, **kwargs): |
|
config = { |
|
"num_train_timesteps": 1000, |
|
"beta_start": 0.00085, |
|
"beta_end": 0.0120, |
|
"beta_schedule": "scaled_linear", |
|
"prediction_type": "epsilon", |
|
} |
|
|
|
config.update(**kwargs) |
|
return config |
|
|
|
@property |
|
def default_valid_timestep(self): |
|
kwargs = dict(self.forward_default_kwargs) |
|
num_inference_steps = kwargs.pop("num_inference_steps", None) |
|
|
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = self.scheduler_classes[0](**scheduler_config) |
|
|
|
scheduler.set_timesteps(num_inference_steps) |
|
timestep = scheduler.timesteps[-1] |
|
return timestep |
|
|
|
def test_timesteps(self): |
|
for timesteps in [100, 500, 1000]: |
|
|
|
self.check_over_configs(time_step=timesteps - 1, num_train_timesteps=timesteps) |
|
|
|
def test_betas(self): |
|
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]): |
|
self.check_over_configs(time_step=self.default_valid_timestep, beta_start=beta_start, beta_end=beta_end) |
|
|
|
def test_schedules(self): |
|
for schedule in ["linear", "scaled_linear", "squaredcos_cap_v2"]: |
|
self.check_over_configs(time_step=self.default_valid_timestep, beta_schedule=schedule) |
|
|
|
def test_prediction_type(self): |
|
for prediction_type in ["epsilon", "v_prediction"]: |
|
self.check_over_configs(time_step=self.default_valid_timestep, prediction_type=prediction_type) |
|
|
|
def test_clip_sample(self): |
|
for clip_sample in [True, False]: |
|
self.check_over_configs(time_step=self.default_valid_timestep, clip_sample=clip_sample) |
|
|
|
def test_thresholding(self): |
|
self.check_over_configs(time_step=self.default_valid_timestep, thresholding=False) |
|
for threshold in [0.5, 1.0, 2.0]: |
|
for prediction_type in ["epsilon", "v_prediction"]: |
|
self.check_over_configs( |
|
time_step=self.default_valid_timestep, |
|
thresholding=True, |
|
prediction_type=prediction_type, |
|
sample_max_value=threshold, |
|
) |
|
|
|
def test_time_indices(self): |
|
|
|
kwargs = dict(self.forward_default_kwargs) |
|
num_inference_steps = kwargs.pop("num_inference_steps", None) |
|
|
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = self.scheduler_classes[0](**scheduler_config) |
|
|
|
scheduler.set_timesteps(num_inference_steps) |
|
timesteps = scheduler.timesteps |
|
for t in timesteps: |
|
self.check_over_forward(time_step=t) |
|
|
|
def test_inference_steps(self): |
|
|
|
for t, num_inference_steps in zip([99, 39, 39, 19], [10, 25, 26, 50]): |
|
self.check_over_forward(time_step=t, num_inference_steps=num_inference_steps) |
|
|
|
|
|
|
|
def test_add_noise_device(self, num_inference_steps=10): |
|
for scheduler_class in self.scheduler_classes: |
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
scheduler.set_timesteps(num_inference_steps) |
|
|
|
sample = self.dummy_sample.to(torch_device) |
|
scaled_sample = scheduler.scale_model_input(sample, 0.0) |
|
self.assertEqual(sample.shape, scaled_sample.shape) |
|
|
|
noise = torch.randn_like(scaled_sample).to(torch_device) |
|
t = scheduler.timesteps[5][None] |
|
noised = scheduler.add_noise(scaled_sample, noise, t) |
|
self.assertEqual(noised.shape, scaled_sample.shape) |
|
|
|
|
|
def test_from_save_pretrained(self): |
|
kwargs = dict(self.forward_default_kwargs) |
|
num_inference_steps = kwargs.pop("num_inference_steps", None) |
|
|
|
for scheduler_class in self.scheduler_classes: |
|
timestep = self.default_valid_timestep |
|
|
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
sample = self.dummy_sample |
|
residual = 0.1 * sample |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
scheduler.save_config(tmpdirname) |
|
new_scheduler = scheduler_class.from_pretrained(tmpdirname) |
|
|
|
scheduler.set_timesteps(num_inference_steps) |
|
new_scheduler.set_timesteps(num_inference_steps) |
|
|
|
kwargs["generator"] = torch.manual_seed(0) |
|
output = scheduler.step(residual, timestep, sample, **kwargs).prev_sample |
|
|
|
kwargs["generator"] = torch.manual_seed(0) |
|
new_output = new_scheduler.step(residual, timestep, sample, **kwargs).prev_sample |
|
|
|
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" |
|
|
|
|
|
def test_step_shape(self): |
|
kwargs = dict(self.forward_default_kwargs) |
|
num_inference_steps = kwargs.pop("num_inference_steps", None) |
|
|
|
for scheduler_class in self.scheduler_classes: |
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
sample = self.dummy_sample |
|
residual = 0.1 * sample |
|
|
|
scheduler.set_timesteps(num_inference_steps) |
|
|
|
timestep_0 = scheduler.timesteps[-2] |
|
timestep_1 = scheduler.timesteps[-1] |
|
|
|
output_0 = scheduler.step(residual, timestep_0, sample, **kwargs).prev_sample |
|
output_1 = scheduler.step(residual, timestep_1, sample, **kwargs).prev_sample |
|
|
|
self.assertEqual(output_0.shape, sample.shape) |
|
self.assertEqual(output_0.shape, output_1.shape) |
|
|
|
|
|
def test_scheduler_outputs_equivalence(self): |
|
def set_nan_tensor_to_zero(t): |
|
t[t != t] = 0 |
|
return t |
|
|
|
def recursive_check(tuple_object, dict_object): |
|
if isinstance(tuple_object, (List, Tuple)): |
|
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()): |
|
recursive_check(tuple_iterable_value, dict_iterable_value) |
|
elif isinstance(tuple_object, Dict): |
|
for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()): |
|
recursive_check(tuple_iterable_value, dict_iterable_value) |
|
elif tuple_object is None: |
|
return |
|
else: |
|
self.assertTrue( |
|
torch.allclose( |
|
set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5 |
|
), |
|
msg=( |
|
"Tuple and dict output are not equal. Difference:" |
|
f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:" |
|
f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has" |
|
f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}." |
|
), |
|
) |
|
|
|
kwargs = dict(self.forward_default_kwargs) |
|
num_inference_steps = kwargs.pop("num_inference_steps", 50) |
|
|
|
timestep = self.default_valid_timestep |
|
|
|
for scheduler_class in self.scheduler_classes: |
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
sample = self.dummy_sample |
|
residual = 0.1 * sample |
|
|
|
scheduler.set_timesteps(num_inference_steps) |
|
kwargs["generator"] = torch.manual_seed(0) |
|
outputs_dict = scheduler.step(residual, timestep, sample, **kwargs) |
|
|
|
scheduler.set_timesteps(num_inference_steps) |
|
kwargs["generator"] = torch.manual_seed(0) |
|
outputs_tuple = scheduler.step(residual, timestep, sample, return_dict=False, **kwargs) |
|
|
|
recursive_check(outputs_tuple, outputs_dict) |
|
|
|
def full_loop(self, num_inference_steps=10, seed=0, **config): |
|
scheduler_class = self.scheduler_classes[0] |
|
scheduler_config = self.get_scheduler_config(**config) |
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
model = self.dummy_model() |
|
sample = self.dummy_sample_deter |
|
generator = torch.manual_seed(seed) |
|
|
|
scheduler.set_timesteps(num_inference_steps) |
|
|
|
for t in scheduler.timesteps: |
|
residual = model(sample, t) |
|
sample = scheduler.step(residual, t, sample, generator).prev_sample |
|
|
|
return sample |
|
|
|
def test_full_loop_onestep(self): |
|
sample = self.full_loop(num_inference_steps=1) |
|
|
|
result_sum = torch.sum(torch.abs(sample)) |
|
result_mean = torch.mean(torch.abs(sample)) |
|
|
|
|
|
assert abs(result_sum.item() - 18.7097) < 1e-3 |
|
assert abs(result_mean.item() - 0.0244) < 1e-3 |
|
|
|
def test_full_loop_multistep(self): |
|
sample = self.full_loop(num_inference_steps=10) |
|
|
|
result_sum = torch.sum(torch.abs(sample)) |
|
result_mean = torch.mean(torch.abs(sample)) |
|
|
|
|
|
assert abs(result_sum.item() - 197.7616) < 1e-3 |
|
assert abs(result_mean.item() - 0.2575) < 1e-3 |
|
|
|
def test_custom_timesteps(self): |
|
scheduler_class = self.scheduler_classes[0] |
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
timesteps = [100, 87, 50, 1, 0] |
|
|
|
scheduler.set_timesteps(timesteps=timesteps) |
|
|
|
scheduler_timesteps = scheduler.timesteps |
|
|
|
for i, timestep in enumerate(scheduler_timesteps): |
|
if i == len(timesteps) - 1: |
|
expected_prev_t = -1 |
|
else: |
|
expected_prev_t = timesteps[i + 1] |
|
|
|
prev_t = scheduler.previous_timestep(timestep) |
|
prev_t = prev_t.item() |
|
|
|
self.assertEqual(prev_t, expected_prev_t) |
|
|
|
def test_custom_timesteps_increasing_order(self): |
|
scheduler_class = self.scheduler_classes[0] |
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
timesteps = [100, 87, 50, 51, 0] |
|
|
|
with self.assertRaises(ValueError, msg="`custom_timesteps` must be in descending order."): |
|
scheduler.set_timesteps(timesteps=timesteps) |
|
|
|
def test_custom_timesteps_passing_both_num_inference_steps_and_timesteps(self): |
|
scheduler_class = self.scheduler_classes[0] |
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
timesteps = [100, 87, 50, 1, 0] |
|
num_inference_steps = len(timesteps) |
|
|
|
with self.assertRaises(ValueError, msg="Can only pass one of `num_inference_steps` or `custom_timesteps`."): |
|
scheduler.set_timesteps(num_inference_steps=num_inference_steps, timesteps=timesteps) |
|
|
|
def test_custom_timesteps_too_large(self): |
|
scheduler_class = self.scheduler_classes[0] |
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
timesteps = [scheduler.config.num_train_timesteps] |
|
|
|
with self.assertRaises( |
|
ValueError, |
|
msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}", |
|
): |
|
scheduler.set_timesteps(timesteps=timesteps) |
|
|