|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
import numpy as np |
|
import PIL.Image |
|
import torch |
|
from parameterized import parameterized |
|
|
|
from diffusers.video_processor import VideoProcessor |
|
|
|
|
|
np.random.seed(0) |
|
torch.manual_seed(0) |
|
|
|
|
|
class VideoProcessorTest(unittest.TestCase): |
|
def get_dummy_sample(self, input_type): |
|
batch_size = 1 |
|
num_frames = 5 |
|
num_channels = 3 |
|
height = 8 |
|
width = 8 |
|
|
|
def generate_image(): |
|
return PIL.Image.fromarray(np.random.randint(0, 256, size=(height, width, num_channels)).astype("uint8")) |
|
|
|
def generate_4d_array(): |
|
return np.random.rand(num_frames, height, width, num_channels) |
|
|
|
def generate_5d_array(): |
|
return np.random.rand(batch_size, num_frames, height, width, num_channels) |
|
|
|
def generate_4d_tensor(): |
|
return torch.rand(num_frames, num_channels, height, width) |
|
|
|
def generate_5d_tensor(): |
|
return torch.rand(batch_size, num_frames, num_channels, height, width) |
|
|
|
if input_type == "list_images": |
|
sample = [generate_image() for _ in range(num_frames)] |
|
elif input_type == "list_list_images": |
|
sample = [[generate_image() for _ in range(num_frames)] for _ in range(num_frames)] |
|
elif input_type == "list_4d_np": |
|
sample = [generate_4d_array() for _ in range(num_frames)] |
|
elif input_type == "list_list_4d_np": |
|
sample = [[generate_4d_array() for _ in range(num_frames)] for _ in range(num_frames)] |
|
elif input_type == "list_5d_np": |
|
sample = [generate_5d_array() for _ in range(num_frames)] |
|
elif input_type == "5d_np": |
|
sample = generate_5d_array() |
|
elif input_type == "list_4d_pt": |
|
sample = [generate_4d_tensor() for _ in range(num_frames)] |
|
elif input_type == "list_list_4d_pt": |
|
sample = [[generate_4d_tensor() for _ in range(num_frames)] for _ in range(num_frames)] |
|
elif input_type == "list_5d_pt": |
|
sample = [generate_5d_tensor() for _ in range(num_frames)] |
|
elif input_type == "5d_pt": |
|
sample = generate_5d_tensor() |
|
|
|
return sample |
|
|
|
def to_np(self, video): |
|
|
|
if isinstance(video[0], PIL.Image.Image): |
|
video = np.stack([np.array(i) for i in video], axis=0) |
|
|
|
|
|
elif isinstance(video, list) and isinstance(video[0][0], PIL.Image.Image): |
|
frames = [] |
|
for vid in video: |
|
all_current_frames = np.stack([np.array(i) for i in vid], axis=0) |
|
frames.append(all_current_frames) |
|
video = np.stack([np.array(frame) for frame in frames], axis=0) |
|
|
|
|
|
elif isinstance(video, list) and isinstance(video[0], (torch.Tensor, np.ndarray)): |
|
if isinstance(video[0], np.ndarray): |
|
video = np.stack(video, axis=0) if video[0].ndim == 4 else np.concatenate(video, axis=0) |
|
else: |
|
if video[0].ndim == 4: |
|
video = np.stack([i.cpu().numpy().transpose(0, 2, 3, 1) for i in video], axis=0) |
|
elif video[0].ndim == 5: |
|
video = np.concatenate([i.cpu().numpy().transpose(0, 1, 3, 4, 2) for i in video], axis=0) |
|
|
|
|
|
elif ( |
|
isinstance(video, list) |
|
and isinstance(video[0], list) |
|
and isinstance(video[0][0], (torch.Tensor, np.ndarray)) |
|
): |
|
all_frames = [] |
|
for list_of_videos in video: |
|
temp_frames = [] |
|
for vid in list_of_videos: |
|
if vid.ndim == 4: |
|
current_vid_frames = np.stack( |
|
[i if isinstance(i, np.ndarray) else i.cpu().numpy().transpose(1, 2, 0) for i in vid], |
|
axis=0, |
|
) |
|
elif vid.ndim == 5: |
|
current_vid_frames = np.concatenate( |
|
[i if isinstance(i, np.ndarray) else i.cpu().numpy().transpose(0, 2, 3, 1) for i in vid], |
|
axis=0, |
|
) |
|
temp_frames.append(current_vid_frames) |
|
temp_frames = np.stack(temp_frames, axis=0) |
|
all_frames.append(temp_frames) |
|
|
|
video = np.concatenate(all_frames, axis=0) |
|
|
|
|
|
elif isinstance(video, (torch.Tensor, np.ndarray)) and video.ndim == 5: |
|
video = video if isinstance(video, np.ndarray) else video.cpu().numpy().transpose(0, 1, 3, 4, 2) |
|
|
|
return video |
|
|
|
@parameterized.expand(["list_images", "list_list_images"]) |
|
def test_video_processor_pil(self, input_type): |
|
video_processor = VideoProcessor(do_resize=False, do_normalize=True) |
|
|
|
input = self.get_dummy_sample(input_type=input_type) |
|
|
|
for output_type in ["pt", "np", "pil"]: |
|
out = video_processor.postprocess_video(video_processor.preprocess_video(input), output_type=output_type) |
|
out_np = self.to_np(out) |
|
input_np = self.to_np(input).astype("float32") / 255.0 if output_type != "pil" else self.to_np(input) |
|
assert np.abs(input_np - out_np).max() < 1e-6, f"Decoded output does not match input for {output_type=}" |
|
|
|
@parameterized.expand(["list_4d_np", "list_5d_np", "5d_np"]) |
|
def test_video_processor_np(self, input_type): |
|
video_processor = VideoProcessor(do_resize=False, do_normalize=True) |
|
|
|
input = self.get_dummy_sample(input_type=input_type) |
|
|
|
for output_type in ["pt", "np", "pil"]: |
|
out = video_processor.postprocess_video(video_processor.preprocess_video(input), output_type=output_type) |
|
out_np = self.to_np(out) |
|
input_np = ( |
|
(self.to_np(input) * 255.0).round().astype("uint8") if output_type == "pil" else self.to_np(input) |
|
) |
|
assert np.abs(input_np - out_np).max() < 1e-6, f"Decoded output does not match input for {output_type=}" |
|
|
|
@parameterized.expand(["list_4d_pt", "list_5d_pt", "5d_pt"]) |
|
def test_video_processor_pt(self, input_type): |
|
video_processor = VideoProcessor(do_resize=False, do_normalize=True) |
|
|
|
input = self.get_dummy_sample(input_type=input_type) |
|
|
|
for output_type in ["pt", "np", "pil"]: |
|
out = video_processor.postprocess_video(video_processor.preprocess_video(input), output_type=output_type) |
|
out_np = self.to_np(out) |
|
input_np = ( |
|
(self.to_np(input) * 255.0).round().astype("uint8") if output_type == "pil" else self.to_np(input) |
|
) |
|
assert np.abs(input_np - out_np).max() < 1e-6, f"Decoded output does not match input for {output_type=}" |
|
|