|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
import torch |
|
|
|
from diffusers import DDIMScheduler, DDPMScheduler, UNet2DModel |
|
from diffusers.training_utils import set_seed |
|
from diffusers.utils.testing_utils import slow |
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = False |
|
|
|
|
|
class TrainingTests(unittest.TestCase): |
|
def get_model_optimizer(self, resolution=32): |
|
set_seed(0) |
|
model = UNet2DModel(sample_size=resolution, in_channels=3, out_channels=3) |
|
optimizer = torch.optim.SGD(model.parameters(), lr=0.0001) |
|
return model, optimizer |
|
|
|
@slow |
|
def test_training_step_equality(self): |
|
device = "cpu" |
|
ddpm_scheduler = DDPMScheduler( |
|
num_train_timesteps=1000, |
|
beta_start=0.0001, |
|
beta_end=0.02, |
|
beta_schedule="linear", |
|
clip_sample=True, |
|
) |
|
ddim_scheduler = DDIMScheduler( |
|
num_train_timesteps=1000, |
|
beta_start=0.0001, |
|
beta_end=0.02, |
|
beta_schedule="linear", |
|
clip_sample=True, |
|
) |
|
|
|
assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps |
|
|
|
|
|
set_seed(0) |
|
clean_images = [torch.randn((4, 3, 32, 32)).clip(-1, 1).to(device) for _ in range(4)] |
|
noise = [torch.randn((4, 3, 32, 32)).to(device) for _ in range(4)] |
|
timesteps = [torch.randint(0, 1000, (4,)).long().to(device) for _ in range(4)] |
|
|
|
|
|
model, optimizer = self.get_model_optimizer(resolution=32) |
|
model.train().to(device) |
|
for i in range(4): |
|
optimizer.zero_grad() |
|
ddpm_noisy_images = ddpm_scheduler.add_noise(clean_images[i], noise[i], timesteps[i]) |
|
ddpm_noise_pred = model(ddpm_noisy_images, timesteps[i]).sample |
|
loss = torch.nn.functional.mse_loss(ddpm_noise_pred, noise[i]) |
|
loss.backward() |
|
optimizer.step() |
|
del model, optimizer |
|
|
|
|
|
model, optimizer = self.get_model_optimizer(resolution=32) |
|
model.train().to(device) |
|
for i in range(4): |
|
optimizer.zero_grad() |
|
ddim_noisy_images = ddim_scheduler.add_noise(clean_images[i], noise[i], timesteps[i]) |
|
ddim_noise_pred = model(ddim_noisy_images, timesteps[i]).sample |
|
loss = torch.nn.functional.mse_loss(ddim_noise_pred, noise[i]) |
|
loss.backward() |
|
optimizer.step() |
|
del model, optimizer |
|
|
|
self.assertTrue(torch.allclose(ddpm_noisy_images, ddim_noisy_images, atol=1e-5)) |
|
self.assertTrue(torch.allclose(ddpm_noise_pred, ddim_noise_pred, atol=1e-5)) |
|
|