stable-diffusion-v1-5-tst_chair
/
diffusers
/examples
/unconditional_image_generation
/train_unconditional.py
import argparse | |
import inspect | |
import logging | |
import math | |
import os | |
import shutil | |
from datetime import timedelta | |
from pathlib import Path | |
import accelerate | |
import datasets | |
import torch | |
import torch.nn.functional as F | |
from accelerate import Accelerator, InitProcessGroupKwargs | |
from accelerate.logging import get_logger | |
from accelerate.utils import ProjectConfiguration | |
from datasets import load_dataset | |
from huggingface_hub import create_repo, upload_folder | |
from packaging import version | |
from torchvision import transforms | |
from tqdm.auto import tqdm | |
import diffusers | |
from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel | |
from diffusers.optimization import get_scheduler | |
from diffusers.training_utils import EMAModel | |
from diffusers.utils import check_min_version, is_accelerate_version, is_tensorboard_available, is_wandb_available | |
from diffusers.utils.import_utils import is_xformers_available | |
# Will error if the minimal version of diffusers is not installed. Remove at your own risks. | |
check_min_version("0.31.0.dev0") | |
logger = get_logger(__name__, log_level="INFO") | |
def _extract_into_tensor(arr, timesteps, broadcast_shape): | |
""" | |
Extract values from a 1-D numpy array for a batch of indices. | |
:param arr: the 1-D numpy array. | |
:param timesteps: a tensor of indices into the array to extract. | |
:param broadcast_shape: a larger shape of K dimensions with the batch | |
dimension equal to the length of timesteps. | |
:return: a tensor of shape [batch_size, 1, ...] where the shape has K dims. | |
""" | |
if not isinstance(arr, torch.Tensor): | |
arr = torch.from_numpy(arr) | |
res = arr[timesteps].float().to(timesteps.device) | |
while len(res.shape) < len(broadcast_shape): | |
res = res[..., None] | |
return res.expand(broadcast_shape) | |
def parse_args(): | |
parser = argparse.ArgumentParser(description="Simple example of a training script.") | |
parser.add_argument( | |
"--dataset_name", | |
type=str, | |
default=None, | |
help=( | |
"The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," | |
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," | |
" or to a folder containing files that HF Datasets can understand." | |
), | |
) | |
parser.add_argument( | |
"--dataset_config_name", | |
type=str, | |
default=None, | |
help="The config of the Dataset, leave as None if there's only one config.", | |
) | |
parser.add_argument( | |
"--model_config_name_or_path", | |
type=str, | |
default=None, | |
help="The config of the UNet model to train, leave as None to use standard DDPM configuration.", | |
) | |
parser.add_argument( | |
"--train_data_dir", | |
type=str, | |
default=None, | |
help=( | |
"A folder containing the training data. Folder contents must follow the structure described in" | |
" https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file" | |
" must exist to provide the captions for the images. Ignored if `dataset_name` is specified." | |
), | |
) | |
parser.add_argument( | |
"--output_dir", | |
type=str, | |
default="ddpm-model-64", | |
help="The output directory where the model predictions and checkpoints will be written.", | |
) | |
parser.add_argument("--overwrite_output_dir", action="store_true") | |
parser.add_argument( | |
"--cache_dir", | |
type=str, | |
default=None, | |
help="The directory where the downloaded models and datasets will be stored.", | |
) | |
parser.add_argument( | |
"--resolution", | |
type=int, | |
default=64, | |
help=( | |
"The resolution for input images, all the images in the train/validation dataset will be resized to this" | |
" resolution" | |
), | |
) | |
parser.add_argument( | |
"--center_crop", | |
default=False, | |
action="store_true", | |
help=( | |
"Whether to center crop the input images to the resolution. If not set, the images will be randomly" | |
" cropped. The images will be resized to the resolution first before cropping." | |
), | |
) | |
parser.add_argument( | |
"--random_flip", | |
default=False, | |
action="store_true", | |
help="whether to randomly flip images horizontally", | |
) | |
parser.add_argument( | |
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader." | |
) | |
parser.add_argument( | |
"--eval_batch_size", type=int, default=16, help="The number of images to generate for evaluation." | |
) | |
parser.add_argument( | |
"--dataloader_num_workers", | |
type=int, | |
default=0, | |
help=( | |
"The number of subprocesses to use for data loading. 0 means that the data will be loaded in the main" | |
" process." | |
), | |
) | |
parser.add_argument("--num_epochs", type=int, default=100) | |
parser.add_argument("--save_images_epochs", type=int, default=10, help="How often to save images during training.") | |
parser.add_argument( | |
"--save_model_epochs", type=int, default=10, help="How often to save the model during training." | |
) | |
parser.add_argument( | |
"--gradient_accumulation_steps", | |
type=int, | |
default=1, | |
help="Number of updates steps to accumulate before performing a backward/update pass.", | |
) | |
parser.add_argument( | |
"--learning_rate", | |
type=float, | |
default=1e-4, | |
help="Initial learning rate (after the potential warmup period) to use.", | |
) | |
parser.add_argument( | |
"--lr_scheduler", | |
type=str, | |
default="cosine", | |
help=( | |
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' | |
' "constant", "constant_with_warmup"]' | |
), | |
) | |
parser.add_argument( | |
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." | |
) | |
parser.add_argument("--adam_beta1", type=float, default=0.95, help="The beta1 parameter for the Adam optimizer.") | |
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") | |
parser.add_argument( | |
"--adam_weight_decay", type=float, default=1e-6, help="Weight decay magnitude for the Adam optimizer." | |
) | |
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer.") | |
parser.add_argument( | |
"--use_ema", | |
action="store_true", | |
help="Whether to use Exponential Moving Average for the final model weights.", | |
) | |
parser.add_argument("--ema_inv_gamma", type=float, default=1.0, help="The inverse gamma value for the EMA decay.") | |
parser.add_argument("--ema_power", type=float, default=3 / 4, help="The power value for the EMA decay.") | |
parser.add_argument("--ema_max_decay", type=float, default=0.9999, help="The maximum decay magnitude for EMA.") | |
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") | |
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") | |
parser.add_argument( | |
"--hub_model_id", | |
type=str, | |
default=None, | |
help="The name of the repository to keep in sync with the local `output_dir`.", | |
) | |
parser.add_argument( | |
"--hub_private_repo", action="store_true", help="Whether or not to create a private repository." | |
) | |
parser.add_argument( | |
"--logger", | |
type=str, | |
default="tensorboard", | |
choices=["tensorboard", "wandb"], | |
help=( | |
"Whether to use [tensorboard](https://www.tensorflow.org/tensorboard) or [wandb](https://www.wandb.ai)" | |
" for experiment tracking and logging of model metrics and model checkpoints" | |
), | |
) | |
parser.add_argument( | |
"--logging_dir", | |
type=str, | |
default="logs", | |
help=( | |
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" | |
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." | |
), | |
) | |
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") | |
parser.add_argument( | |
"--mixed_precision", | |
type=str, | |
default="no", | |
choices=["no", "fp16", "bf16"], | |
help=( | |
"Whether to use mixed precision. Choose" | |
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." | |
"and an Nvidia Ampere GPU." | |
), | |
) | |
parser.add_argument( | |
"--prediction_type", | |
type=str, | |
default="epsilon", | |
choices=["epsilon", "sample"], | |
help="Whether the model should predict the 'epsilon'/noise error or directly the reconstructed image 'x0'.", | |
) | |
parser.add_argument("--ddpm_num_steps", type=int, default=1000) | |
parser.add_argument("--ddpm_num_inference_steps", type=int, default=1000) | |
parser.add_argument("--ddpm_beta_schedule", type=str, default="linear") | |
parser.add_argument( | |
"--checkpointing_steps", | |
type=int, | |
default=500, | |
help=( | |
"Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming" | |
" training using `--resume_from_checkpoint`." | |
), | |
) | |
parser.add_argument( | |
"--checkpoints_total_limit", | |
type=int, | |
default=None, | |
help=("Max number of checkpoints to store."), | |
) | |
parser.add_argument( | |
"--resume_from_checkpoint", | |
type=str, | |
default=None, | |
help=( | |
"Whether training should be resumed from a previous checkpoint. Use a path saved by" | |
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' | |
), | |
) | |
parser.add_argument( | |
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." | |
) | |
args = parser.parse_args() | |
env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) | |
if env_local_rank != -1 and env_local_rank != args.local_rank: | |
args.local_rank = env_local_rank | |
if args.dataset_name is None and args.train_data_dir is None: | |
raise ValueError("You must specify either a dataset name from the hub or a train data directory.") | |
return args | |
def main(args): | |
logging_dir = os.path.join(args.output_dir, args.logging_dir) | |
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) | |
kwargs = InitProcessGroupKwargs(timeout=timedelta(seconds=7200)) # a big number for high resolution or big dataset | |
accelerator = Accelerator( | |
gradient_accumulation_steps=args.gradient_accumulation_steps, | |
mixed_precision=args.mixed_precision, | |
log_with=args.logger, | |
project_config=accelerator_project_config, | |
kwargs_handlers=[kwargs], | |
) | |
if args.logger == "tensorboard": | |
if not is_tensorboard_available(): | |
raise ImportError("Make sure to install tensorboard if you want to use it for logging during training.") | |
elif args.logger == "wandb": | |
if not is_wandb_available(): | |
raise ImportError("Make sure to install wandb if you want to use it for logging during training.") | |
import wandb | |
# `accelerate` 0.16.0 will have better support for customized saving | |
if version.parse(accelerate.__version__) >= version.parse("0.16.0"): | |
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format | |
def save_model_hook(models, weights, output_dir): | |
if accelerator.is_main_process: | |
if args.use_ema: | |
ema_model.save_pretrained(os.path.join(output_dir, "unet_ema")) | |
for i, model in enumerate(models): | |
model.save_pretrained(os.path.join(output_dir, "unet")) | |
# make sure to pop weight so that corresponding model is not saved again | |
weights.pop() | |
def load_model_hook(models, input_dir): | |
if args.use_ema: | |
load_model = EMAModel.from_pretrained(os.path.join(input_dir, "unet_ema"), UNet2DModel) | |
ema_model.load_state_dict(load_model.state_dict()) | |
ema_model.to(accelerator.device) | |
del load_model | |
for i in range(len(models)): | |
# pop models so that they are not loaded again | |
model = models.pop() | |
# load diffusers style into model | |
load_model = UNet2DModel.from_pretrained(input_dir, subfolder="unet") | |
model.register_to_config(**load_model.config) | |
model.load_state_dict(load_model.state_dict()) | |
del load_model | |
accelerator.register_save_state_pre_hook(save_model_hook) | |
accelerator.register_load_state_pre_hook(load_model_hook) | |
# Make one log on every process with the configuration for debugging. | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
level=logging.INFO, | |
) | |
logger.info(accelerator.state, main_process_only=False) | |
if accelerator.is_local_main_process: | |
datasets.utils.logging.set_verbosity_warning() | |
diffusers.utils.logging.set_verbosity_info() | |
else: | |
datasets.utils.logging.set_verbosity_error() | |
diffusers.utils.logging.set_verbosity_error() | |
# Handle the repository creation | |
if accelerator.is_main_process: | |
if args.output_dir is not None: | |
os.makedirs(args.output_dir, exist_ok=True) | |
if args.push_to_hub: | |
repo_id = create_repo( | |
repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token | |
).repo_id | |
# Initialize the model | |
if args.model_config_name_or_path is None: | |
model = UNet2DModel( | |
sample_size=args.resolution, | |
in_channels=3, | |
out_channels=3, | |
layers_per_block=2, | |
block_out_channels=(128, 128, 256, 256, 512, 512), | |
down_block_types=( | |
"DownBlock2D", | |
"DownBlock2D", | |
"DownBlock2D", | |
"DownBlock2D", | |
"AttnDownBlock2D", | |
"DownBlock2D", | |
), | |
up_block_types=( | |
"UpBlock2D", | |
"AttnUpBlock2D", | |
"UpBlock2D", | |
"UpBlock2D", | |
"UpBlock2D", | |
"UpBlock2D", | |
), | |
) | |
else: | |
config = UNet2DModel.load_config(args.model_config_name_or_path) | |
model = UNet2DModel.from_config(config) | |
# Create EMA for the model. | |
if args.use_ema: | |
ema_model = EMAModel( | |
model.parameters(), | |
decay=args.ema_max_decay, | |
use_ema_warmup=True, | |
inv_gamma=args.ema_inv_gamma, | |
power=args.ema_power, | |
model_cls=UNet2DModel, | |
model_config=model.config, | |
) | |
weight_dtype = torch.float32 | |
if accelerator.mixed_precision == "fp16": | |
weight_dtype = torch.float16 | |
args.mixed_precision = accelerator.mixed_precision | |
elif accelerator.mixed_precision == "bf16": | |
weight_dtype = torch.bfloat16 | |
args.mixed_precision = accelerator.mixed_precision | |
if args.enable_xformers_memory_efficient_attention: | |
if is_xformers_available(): | |
import xformers | |
xformers_version = version.parse(xformers.__version__) | |
if xformers_version == version.parse("0.0.16"): | |
logger.warning( | |
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." | |
) | |
model.enable_xformers_memory_efficient_attention() | |
else: | |
raise ValueError("xformers is not available. Make sure it is installed correctly") | |
# Initialize the scheduler | |
accepts_prediction_type = "prediction_type" in set(inspect.signature(DDPMScheduler.__init__).parameters.keys()) | |
if accepts_prediction_type: | |
noise_scheduler = DDPMScheduler( | |
num_train_timesteps=args.ddpm_num_steps, | |
beta_schedule=args.ddpm_beta_schedule, | |
prediction_type=args.prediction_type, | |
) | |
else: | |
noise_scheduler = DDPMScheduler(num_train_timesteps=args.ddpm_num_steps, beta_schedule=args.ddpm_beta_schedule) | |
# Initialize the optimizer | |
optimizer = torch.optim.AdamW( | |
model.parameters(), | |
lr=args.learning_rate, | |
betas=(args.adam_beta1, args.adam_beta2), | |
weight_decay=args.adam_weight_decay, | |
eps=args.adam_epsilon, | |
) | |
# Get the datasets: you can either provide your own training and evaluation files (see below) | |
# or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub). | |
# In distributed training, the load_dataset function guarantees that only one local process can concurrently | |
# download the dataset. | |
if args.dataset_name is not None: | |
dataset = load_dataset( | |
args.dataset_name, | |
args.dataset_config_name, | |
cache_dir=args.cache_dir, | |
split="train", | |
) | |
else: | |
dataset = load_dataset("imagefolder", data_dir=args.train_data_dir, cache_dir=args.cache_dir, split="train") | |
# See more about loading custom images at | |
# https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder | |
# Preprocessing the datasets and DataLoaders creation. | |
augmentations = transforms.Compose( | |
[ | |
transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR), | |
transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution), | |
transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x), | |
transforms.ToTensor(), | |
transforms.Normalize([0.5], [0.5]), | |
] | |
) | |
def transform_images(examples): | |
images = [augmentations(image.convert("RGB")) for image in examples["image"]] | |
return {"input": images} | |
logger.info(f"Dataset size: {len(dataset)}") | |
dataset.set_transform(transform_images) | |
train_dataloader = torch.utils.data.DataLoader( | |
dataset, batch_size=args.train_batch_size, shuffle=True, num_workers=args.dataloader_num_workers | |
) | |
# Initialize the learning rate scheduler | |
lr_scheduler = get_scheduler( | |
args.lr_scheduler, | |
optimizer=optimizer, | |
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, | |
num_training_steps=(len(train_dataloader) * args.num_epochs), | |
) | |
# Prepare everything with our `accelerator`. | |
model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( | |
model, optimizer, train_dataloader, lr_scheduler | |
) | |
if args.use_ema: | |
ema_model.to(accelerator.device) | |
# We need to initialize the trackers we use, and also store our configuration. | |
# The trackers initializes automatically on the main process. | |
if accelerator.is_main_process: | |
run = os.path.split(__file__)[-1].split(".")[0] | |
accelerator.init_trackers(run) | |
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps | |
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
max_train_steps = args.num_epochs * num_update_steps_per_epoch | |
logger.info("***** Running training *****") | |
logger.info(f" Num examples = {len(dataset)}") | |
logger.info(f" Num Epochs = {args.num_epochs}") | |
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") | |
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") | |
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") | |
logger.info(f" Total optimization steps = {max_train_steps}") | |
global_step = 0 | |
first_epoch = 0 | |
# Potentially load in the weights and states from a previous save | |
if args.resume_from_checkpoint: | |
if args.resume_from_checkpoint != "latest": | |
path = os.path.basename(args.resume_from_checkpoint) | |
else: | |
# Get the most recent checkpoint | |
dirs = os.listdir(args.output_dir) | |
dirs = [d for d in dirs if d.startswith("checkpoint")] | |
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) | |
path = dirs[-1] if len(dirs) > 0 else None | |
if path is None: | |
accelerator.print( | |
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." | |
) | |
args.resume_from_checkpoint = None | |
else: | |
accelerator.print(f"Resuming from checkpoint {path}") | |
accelerator.load_state(os.path.join(args.output_dir, path)) | |
global_step = int(path.split("-")[1]) | |
resume_global_step = global_step * args.gradient_accumulation_steps | |
first_epoch = global_step // num_update_steps_per_epoch | |
resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps) | |
# Train! | |
for epoch in range(first_epoch, args.num_epochs): | |
model.train() | |
progress_bar = tqdm(total=num_update_steps_per_epoch, disable=not accelerator.is_local_main_process) | |
progress_bar.set_description(f"Epoch {epoch}") | |
for step, batch in enumerate(train_dataloader): | |
# Skip steps until we reach the resumed step | |
if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step: | |
if step % args.gradient_accumulation_steps == 0: | |
progress_bar.update(1) | |
continue | |
clean_images = batch["input"].to(weight_dtype) | |
# Sample noise that we'll add to the images | |
noise = torch.randn(clean_images.shape, dtype=weight_dtype, device=clean_images.device) | |
bsz = clean_images.shape[0] | |
# Sample a random timestep for each image | |
timesteps = torch.randint( | |
0, noise_scheduler.config.num_train_timesteps, (bsz,), device=clean_images.device | |
).long() | |
# Add noise to the clean images according to the noise magnitude at each timestep | |
# (this is the forward diffusion process) | |
noisy_images = noise_scheduler.add_noise(clean_images, noise, timesteps) | |
with accelerator.accumulate(model): | |
# Predict the noise residual | |
model_output = model(noisy_images, timesteps).sample | |
if args.prediction_type == "epsilon": | |
loss = F.mse_loss(model_output.float(), noise.float()) # this could have different weights! | |
elif args.prediction_type == "sample": | |
alpha_t = _extract_into_tensor( | |
noise_scheduler.alphas_cumprod, timesteps, (clean_images.shape[0], 1, 1, 1) | |
) | |
snr_weights = alpha_t / (1 - alpha_t) | |
# use SNR weighting from distillation paper | |
loss = snr_weights * F.mse_loss(model_output.float(), clean_images.float(), reduction="none") | |
loss = loss.mean() | |
else: | |
raise ValueError(f"Unsupported prediction type: {args.prediction_type}") | |
accelerator.backward(loss) | |
if accelerator.sync_gradients: | |
accelerator.clip_grad_norm_(model.parameters(), 1.0) | |
optimizer.step() | |
lr_scheduler.step() | |
optimizer.zero_grad() | |
# Checks if the accelerator has performed an optimization step behind the scenes | |
if accelerator.sync_gradients: | |
if args.use_ema: | |
ema_model.step(model.parameters()) | |
progress_bar.update(1) | |
global_step += 1 | |
if accelerator.is_main_process: | |
if global_step % args.checkpointing_steps == 0: | |
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit` | |
if args.checkpoints_total_limit is not None: | |
checkpoints = os.listdir(args.output_dir) | |
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] | |
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) | |
# before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints | |
if len(checkpoints) >= args.checkpoints_total_limit: | |
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 | |
removing_checkpoints = checkpoints[0:num_to_remove] | |
logger.info( | |
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" | |
) | |
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") | |
for removing_checkpoint in removing_checkpoints: | |
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) | |
shutil.rmtree(removing_checkpoint) | |
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") | |
accelerator.save_state(save_path) | |
logger.info(f"Saved state to {save_path}") | |
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "step": global_step} | |
if args.use_ema: | |
logs["ema_decay"] = ema_model.cur_decay_value | |
progress_bar.set_postfix(**logs) | |
accelerator.log(logs, step=global_step) | |
progress_bar.close() | |
accelerator.wait_for_everyone() | |
# Generate sample images for visual inspection | |
if accelerator.is_main_process: | |
if epoch % args.save_images_epochs == 0 or epoch == args.num_epochs - 1: | |
unet = accelerator.unwrap_model(model) | |
if args.use_ema: | |
ema_model.store(unet.parameters()) | |
ema_model.copy_to(unet.parameters()) | |
pipeline = DDPMPipeline( | |
unet=unet, | |
scheduler=noise_scheduler, | |
) | |
generator = torch.Generator(device=pipeline.device).manual_seed(0) | |
# run pipeline in inference (sample random noise and denoise) | |
images = pipeline( | |
generator=generator, | |
batch_size=args.eval_batch_size, | |
num_inference_steps=args.ddpm_num_inference_steps, | |
output_type="np", | |
).images | |
if args.use_ema: | |
ema_model.restore(unet.parameters()) | |
# denormalize the images and save to tensorboard | |
images_processed = (images * 255).round().astype("uint8") | |
if args.logger == "tensorboard": | |
if is_accelerate_version(">=", "0.17.0.dev0"): | |
tracker = accelerator.get_tracker("tensorboard", unwrap=True) | |
else: | |
tracker = accelerator.get_tracker("tensorboard") | |
tracker.add_images("test_samples", images_processed.transpose(0, 3, 1, 2), epoch) | |
elif args.logger == "wandb": | |
# Upcoming `log_images` helper coming in https://github.com/huggingface/accelerate/pull/962/files | |
accelerator.get_tracker("wandb").log( | |
{"test_samples": [wandb.Image(img) for img in images_processed], "epoch": epoch}, | |
step=global_step, | |
) | |
if epoch % args.save_model_epochs == 0 or epoch == args.num_epochs - 1: | |
# save the model | |
unet = accelerator.unwrap_model(model) | |
if args.use_ema: | |
ema_model.store(unet.parameters()) | |
ema_model.copy_to(unet.parameters()) | |
pipeline = DDPMPipeline( | |
unet=unet, | |
scheduler=noise_scheduler, | |
) | |
pipeline.save_pretrained(args.output_dir) | |
if args.use_ema: | |
ema_model.restore(unet.parameters()) | |
if args.push_to_hub: | |
upload_folder( | |
repo_id=repo_id, | |
folder_path=args.output_dir, | |
commit_message=f"Epoch {epoch}", | |
ignore_patterns=["step_*", "epoch_*"], | |
) | |
accelerator.end_training() | |
if __name__ == "__main__": | |
args = parse_args() | |
main(args) | |