stable-diffusion-v1-5-tst_chair / diffusers /examples /community /pipeline_hunyuandit_differential_img2img.py
NadaGh's picture
End of training
3a25a0a verified
raw
history blame
55.2 kB
# Copyright 2024 HunyuanDiT Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
from typing import Callable, Dict, List, Optional, Tuple, Union
import numpy as np
import torch
from transformers import (
BertModel,
BertTokenizer,
CLIPImageProcessor,
MT5Tokenizer,
T5EncoderModel,
)
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
from diffusers.models import AutoencoderKL, HunyuanDiT2DModel
from diffusers.models.embeddings import get_2d_rotary_pos_embed
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import (
StableDiffusionSafetyChecker,
)
from diffusers.schedulers import DDPMScheduler
from diffusers.utils import (
deprecate,
is_torch_xla_available,
logging,
replace_example_docstring,
)
from diffusers.utils.torch_utils import randn_tensor
if is_torch_xla_available():
import torch_xla.core.xla_model as xm
XLA_AVAILABLE = True
else:
XLA_AVAILABLE = False
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import torch
>>> from diffusers import FlowMatchEulerDiscreteScheduler
>>> from diffusers.utils import load_image
>>> from PIL import Image
>>> from torchvision import transforms
>>> from pipeline_hunyuandit_differential_img2img import HunyuanDiTDifferentialImg2ImgPipeline
>>> pipe = HunyuanDiTDifferentialImg2ImgPipeline.from_pretrained(
>>> "Tencent-Hunyuan/HunyuanDiT-Diffusers", torch_dtype=torch.float16
>>> ).to("cuda")
>>> source_image = load_image(
>>> "https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/20240329211129_4024911930.png"
>>> )
>>> map = load_image(
>>> "https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/gradient_mask_2.png"
>>> )
>>> prompt = "a green pear"
>>> negative_prompt = "blurry"
>>> image = pipe(
>>> prompt=prompt,
>>> negative_prompt=negative_prompt,
>>> image=source_image,
>>> num_inference_steps=28,
>>> guidance_scale=4.5,
>>> strength=1.0,
>>> map=map,
>>> ).images[0]
```
"""
STANDARD_RATIO = np.array(
[
1.0, # 1:1
4.0 / 3.0, # 4:3
3.0 / 4.0, # 3:4
16.0 / 9.0, # 16:9
9.0 / 16.0, # 9:16
]
)
STANDARD_SHAPE = [
[(1024, 1024), (1280, 1280)], # 1:1
[(1024, 768), (1152, 864), (1280, 960)], # 4:3
[(768, 1024), (864, 1152), (960, 1280)], # 3:4
[(1280, 768)], # 16:9
[(768, 1280)], # 9:16
]
STANDARD_AREA = [np.array([w * h for w, h in shapes]) for shapes in STANDARD_SHAPE]
SUPPORTED_SHAPE = [
(1024, 1024),
(1280, 1280), # 1:1
(1024, 768),
(1152, 864),
(1280, 960), # 4:3
(768, 1024),
(864, 1152),
(960, 1280), # 3:4
(1280, 768), # 16:9
(768, 1280), # 9:16
]
def map_to_standard_shapes(target_width, target_height):
target_ratio = target_width / target_height
closest_ratio_idx = np.argmin(np.abs(STANDARD_RATIO - target_ratio))
closest_area_idx = np.argmin(np.abs(STANDARD_AREA[closest_ratio_idx] - target_width * target_height))
width, height = STANDARD_SHAPE[closest_ratio_idx][closest_area_idx]
return width, height
def get_resize_crop_region_for_grid(src, tgt_size):
th = tw = tgt_size
h, w = src
r = h / w
# resize
if r > 1:
resize_height = th
resize_width = int(round(th / h * w))
else:
resize_width = tw
resize_height = int(round(tw / w * h))
crop_top = int(round((th - resize_height) / 2.0))
crop_left = int(round((tw - resize_width) / 2.0))
return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
"""
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
"""
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
# rescale the results from guidance (fixes overexposure)
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
return noise_cfg
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
def retrieve_latents(
encoder_output: torch.Tensor,
generator: Optional[torch.Generator] = None,
sample_mode: str = "sample",
):
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
return encoder_output.latent_dist.sample(generator)
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
return encoder_output.latent_dist.mode()
elif hasattr(encoder_output, "latents"):
return encoder_output.latents
else:
raise AttributeError("Could not access latents of provided encoder_output")
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
sigmas: Optional[List[float]] = None,
**kwargs,
):
"""
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
Args:
scheduler (`SchedulerMixin`):
The scheduler to get timesteps from.
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
must be `None`.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
timesteps (`List[int]`, *optional*):
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
`num_inference_steps` and `sigmas` must be `None`.
sigmas (`List[float]`, *optional*):
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
`num_inference_steps` and `timesteps` must be `None`.
Returns:
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
second element is the number of inference steps.
"""
if timesteps is not None and sigmas is not None:
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
if timesteps is not None:
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accepts_timesteps:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" timestep schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
elif sigmas is not None:
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accept_sigmas:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" sigmas schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
class HunyuanDiTDifferentialImg2ImgPipeline(DiffusionPipeline):
r"""
Differential Pipeline for English/Chinese-to-image generation using HunyuanDiT.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
HunyuanDiT uses two text encoders: [mT5](https://huggingface.co/google/mt5-base) and [bilingual CLIP](fine-tuned by
ourselves)
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. We use
`sdxl-vae-fp16-fix`.
text_encoder (Optional[`~transformers.BertModel`, `~transformers.CLIPTextModel`]):
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
HunyuanDiT uses a fine-tuned [bilingual CLIP].
tokenizer (Optional[`~transformers.BertTokenizer`, `~transformers.CLIPTokenizer`]):
A `BertTokenizer` or `CLIPTokenizer` to tokenize text.
transformer ([`HunyuanDiT2DModel`]):
The HunyuanDiT model designed by Tencent Hunyuan.
text_encoder_2 (`T5EncoderModel`):
The mT5 embedder. Specifically, it is 't5-v1_1-xxl'.
tokenizer_2 (`MT5Tokenizer`):
The tokenizer for the mT5 embedder.
scheduler ([`DDPMScheduler`]):
A scheduler to be used in combination with HunyuanDiT to denoise the encoded image latents.
"""
model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
_optional_components = [
"safety_checker",
"feature_extractor",
"text_encoder_2",
"tokenizer_2",
"text_encoder",
"tokenizer",
]
_exclude_from_cpu_offload = ["safety_checker"]
_callback_tensor_inputs = [
"latents",
"prompt_embeds",
"negative_prompt_embeds",
"prompt_embeds_2",
"negative_prompt_embeds_2",
]
def __init__(
self,
vae: AutoencoderKL,
text_encoder: BertModel,
tokenizer: BertTokenizer,
transformer: HunyuanDiT2DModel,
scheduler: DDPMScheduler,
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPImageProcessor,
requires_safety_checker: bool = True,
text_encoder_2=T5EncoderModel,
tokenizer_2=MT5Tokenizer,
):
super().__init__()
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
tokenizer_2=tokenizer_2,
transformer=transformer,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
text_encoder_2=text_encoder_2,
)
if safety_checker is None and requires_safety_checker:
logger.warning(
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
)
if safety_checker is not None and feature_extractor is None:
raise ValueError(
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
)
self.vae_scale_factor = (
2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
self.mask_processor = VaeImageProcessor(
vae_scale_factor=self.vae_scale_factor,
do_normalize=False,
do_convert_grayscale=True,
)
self.register_to_config(requires_safety_checker=requires_safety_checker)
self.default_sample_size = (
self.transformer.config.sample_size
if hasattr(self, "transformer") and self.transformer is not None
else 128
)
# copied from diffusers.pipelines.huanyuandit.pipeline_huanyuandit.HunyuanDiTPipeline.encode_prompt
def encode_prompt(
self,
prompt: str,
device: torch.device = None,
dtype: torch.dtype = None,
num_images_per_prompt: int = 1,
do_classifier_free_guidance: bool = True,
negative_prompt: Optional[str] = None,
prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
prompt_attention_mask: Optional[torch.Tensor] = None,
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
max_sequence_length: Optional[int] = None,
text_encoder_index: int = 0,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
device: (`torch.device`):
torch device
dtype (`torch.dtype`):
torch dtype
num_images_per_prompt (`int`):
number of images that should be generated per prompt
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
prompt_attention_mask (`torch.Tensor`, *optional*):
Attention mask for the prompt. Required when `prompt_embeds` is passed directly.
negative_prompt_attention_mask (`torch.Tensor`, *optional*):
Attention mask for the negative prompt. Required when `negative_prompt_embeds` is passed directly.
max_sequence_length (`int`, *optional*): maximum sequence length to use for the prompt.
text_encoder_index (`int`, *optional*):
Index of the text encoder to use. `0` for clip and `1` for T5.
"""
if dtype is None:
if self.text_encoder_2 is not None:
dtype = self.text_encoder_2.dtype
elif self.transformer is not None:
dtype = self.transformer.dtype
else:
dtype = None
if device is None:
device = self._execution_device
tokenizers = [self.tokenizer, self.tokenizer_2]
text_encoders = [self.text_encoder, self.text_encoder_2]
tokenizer = tokenizers[text_encoder_index]
text_encoder = text_encoders[text_encoder_index]
if max_sequence_length is None:
if text_encoder_index == 0:
max_length = 77
if text_encoder_index == 1:
max_length = 256
else:
max_length = max_sequence_length
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if prompt_embeds is None:
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=max_length,
truncation=True,
return_attention_mask=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {tokenizer.model_max_length} tokens: {removed_text}"
)
prompt_attention_mask = text_inputs.attention_mask.to(device)
prompt_embeds = text_encoder(
text_input_ids.to(device),
attention_mask=prompt_attention_mask,
)
prompt_embeds = prompt_embeds[0]
prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance and negative_prompt_embeds is None:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif prompt is not None and type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
max_length = prompt_embeds.shape[1]
uncond_input = tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
negative_prompt_attention_mask = uncond_input.attention_mask.to(device)
negative_prompt_embeds = text_encoder(
uncond_input.input_ids.to(device),
attention_mask=negative_prompt_attention_mask,
)
negative_prompt_embeds = negative_prompt_embeds[0]
negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1)
if do_classifier_free_guidance:
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
return (
prompt_embeds,
negative_prompt_embeds,
prompt_attention_mask,
negative_prompt_attention_mask,
)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
def run_safety_checker(self, image, device, dtype):
if self.safety_checker is None:
has_nsfw_concept = None
else:
if torch.is_tensor(image):
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
else:
feature_extractor_input = self.image_processor.numpy_to_pil(image)
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
image, has_nsfw_concept = self.safety_checker(
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
)
return image, has_nsfw_concept
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def check_inputs(
self,
prompt,
height,
width,
negative_prompt=None,
prompt_embeds=None,
negative_prompt_embeds=None,
prompt_attention_mask=None,
negative_prompt_attention_mask=None,
prompt_embeds_2=None,
negative_prompt_embeds_2=None,
prompt_attention_mask_2=None,
negative_prompt_attention_mask_2=None,
callback_on_step_end_tensor_inputs=None,
):
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if callback_on_step_end_tensor_inputs is not None and not all(
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
):
raise ValueError(
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is None and prompt_embeds_2 is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds_2`. Cannot leave both `prompt` and `prompt_embeds_2` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if prompt_embeds is not None and prompt_attention_mask is None:
raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")
if prompt_embeds_2 is not None and prompt_attention_mask_2 is None:
raise ValueError("Must provide `prompt_attention_mask_2` when specifying `prompt_embeds_2`.")
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")
if negative_prompt_embeds_2 is not None and negative_prompt_attention_mask_2 is None:
raise ValueError(
"Must provide `negative_prompt_attention_mask_2` when specifying `negative_prompt_embeds_2`."
)
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
if prompt_embeds_2 is not None and negative_prompt_embeds_2 is not None:
if prompt_embeds_2.shape != negative_prompt_embeds_2.shape:
raise ValueError(
"`prompt_embeds_2` and `negative_prompt_embeds_2` must have the same shape when passed directly, but"
f" got: `prompt_embeds_2` {prompt_embeds_2.shape} != `negative_prompt_embeds_2`"
f" {negative_prompt_embeds_2.shape}."
)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
def get_timesteps(self, num_inference_steps, strength, device):
# get the original timestep using init_timestep
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
t_start = max(num_inference_steps - init_timestep, 0)
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
if hasattr(self.scheduler, "set_begin_index"):
self.scheduler.set_begin_index(t_start * self.scheduler.order)
return timesteps, num_inference_steps - t_start
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.prepare_latents
def prepare_latents(
self,
batch_size,
num_channels_latents,
height,
width,
image,
timestep,
dtype,
device,
generator=None,
):
shape = (
batch_size,
num_channels_latents,
int(height) // self.vae_scale_factor,
int(width) // self.vae_scale_factor,
)
image = image.to(device=device, dtype=dtype)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
elif isinstance(generator, list):
init_latents = [
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i]) for i in range(batch_size)
]
init_latents = torch.cat(init_latents, dim=0)
else:
init_latents = retrieve_latents(self.vae.encode(image), generator=generator)
init_latents = init_latents * self.vae.config.scaling_factor
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
# expand init_latents for batch_size
deprecation_message = (
f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial"
" images (`image`). Initial images are now duplicating to match the number of text prompts. Note"
" that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update"
" your script to pass as many initial images as text prompts to suppress this warning."
)
deprecate(
"len(prompt) != len(image)",
"1.0.0",
deprecation_message,
standard_warn=False,
)
additional_image_per_prompt = batch_size // init_latents.shape[0]
init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
raise ValueError(
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
)
else:
init_latents = torch.cat([init_latents], dim=0)
shape = init_latents.shape
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
# get latents
init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
latents = init_latents
return latents
@property
def guidance_scale(self):
return self._guidance_scale
@property
def guidance_rescale(self):
return self._guidance_rescale
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 1
@property
def num_timesteps(self):
return self._num_timesteps
@property
def interrupt(self):
return self._interrupt
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]] = None,
image: PipelineImageInput = None,
strength: float = 0.8,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: Optional[int] = 50,
timesteps: List[int] = None,
sigmas: List[float] = None,
guidance_scale: Optional[float] = 5.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: Optional[float] = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
prompt_embeds: Optional[torch.Tensor] = None,
prompt_embeds_2: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds_2: Optional[torch.Tensor] = None,
prompt_attention_mask: Optional[torch.Tensor] = None,
prompt_attention_mask_2: Optional[torch.Tensor] = None,
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
negative_prompt_attention_mask_2: Optional[torch.Tensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback_on_step_end: Optional[
Union[
Callable[[int, int, Dict], None],
PipelineCallback,
MultiPipelineCallbacks,
]
] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
guidance_rescale: float = 0.0,
original_size: Optional[Tuple[int, int]] = (1024, 1024),
target_size: Optional[Tuple[int, int]] = None,
crops_coords_top_left: Tuple[int, int] = (0, 0),
use_resolution_binning: bool = True,
map: PipelineImageInput = None,
denoising_start: Optional[float] = None,
):
r"""
The call function to the pipeline for generation with HunyuanDiT.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
`Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image
latents as `image`, but if passing latents directly it is not encoded again.
strength (`float`, *optional*, defaults to 0.8):
Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
starting point and more noise is added the higher the `strength`. The number of denoising steps depends
on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
essentially ignores `image`.
height (`int`):
The height in pixels of the generated image.
width (`int`):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference. This parameter is modulated by `strength`.
timesteps (`List[int]`, *optional*):
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
passed will be used. Must be in descending order.
sigmas (`List[float]`, *optional*):
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
will be used.
guidance_scale (`float`, *optional*, defaults to 7.5):
A higher guidance scale value encourages the model to generate images closely linked to the text
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the `prompt` input argument.
prompt_embeds_2 (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the `prompt` input argument.
negative_prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
negative_prompt_embeds_2 (`torch.Tensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
prompt_attention_mask (`torch.Tensor`, *optional*):
Attention mask for the prompt. Required when `prompt_embeds` is passed directly.
prompt_attention_mask_2 (`torch.Tensor`, *optional*):
Attention mask for the prompt. Required when `prompt_embeds_2` is passed directly.
negative_prompt_attention_mask (`torch.Tensor`, *optional*):
Attention mask for the negative prompt. Required when `negative_prompt_embeds` is passed directly.
negative_prompt_attention_mask_2 (`torch.Tensor`, *optional*):
Attention mask for the negative prompt. Required when `negative_prompt_embeds_2` is passed directly.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback_on_step_end (`Callable[[int, int, Dict], None]`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
A callback function or a list of callback functions to be called at the end of each denoising step.
callback_on_step_end_tensor_inputs (`List[str]`, *optional*):
A list of tensor inputs that should be passed to the callback function. If not defined, all tensor
inputs will be passed.
guidance_rescale (`float`, *optional*, defaults to 0.0):
Rescale the noise_cfg according to `guidance_rescale`. Based on findings of [Common Diffusion Noise
Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
original_size (`Tuple[int, int]`, *optional*, defaults to `(1024, 1024)`):
The original size of the image. Used to calculate the time ids.
target_size (`Tuple[int, int]`, *optional*):
The target size of the image. Used to calculate the time ids.
crops_coords_top_left (`Tuple[int, int]`, *optional*, defaults to `(0, 0)`):
The top left coordinates of the crop. Used to calculate the time ids.
use_resolution_binning (`bool`, *optional*, defaults to `True`):
Whether to use resolution binning or not. If `True`, the input resolution will be mapped to the closest
standard resolution. Supported resolutions are 1024x1024, 1280x1280, 1024x768, 1152x864, 1280x960,
768x1024, 864x1152, 960x1280, 1280x768, and 768x1280. It is recommended to set this to `True`.
denoising_start (`float`, *optional*):
When specified, indicates the fraction (between 0.0 and 1.0) of the total denoising process to be
bypassed before it is initiated. Consequently, the initial part of the denoising process is skipped and
it is assumed that the passed `image` is a partly denoised image. Note that when this is specified,
strength will be ignored. The `denoising_start` parameter is particularly beneficial when this pipeline
is integrated into a "Mixture of Denoisers" multi-pipeline setup, as detailed in [**Refining the Image
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output).
Examples:
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
otherwise a `tuple` is returned where the first element is a list with the generated images and the
second element is a list of `bool`s indicating whether the corresponding generated image contains
"not-safe-for-work" (nsfw) content.
"""
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
# 0. default height and width
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
height = int((height // 16) * 16)
width = int((width // 16) * 16)
if use_resolution_binning and (height, width) not in SUPPORTED_SHAPE:
width, height = map_to_standard_shapes(width, height)
height = int(height)
width = int(width)
logger.warning(f"Reshaped to (height, width)=({height}, {width}), Supported shapes are {SUPPORTED_SHAPE}")
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
height,
width,
negative_prompt,
prompt_embeds,
negative_prompt_embeds,
prompt_attention_mask,
negative_prompt_attention_mask,
prompt_embeds_2,
negative_prompt_embeds_2,
prompt_attention_mask_2,
negative_prompt_attention_mask_2,
callback_on_step_end_tensor_inputs,
)
self._guidance_scale = guidance_scale
self._guidance_rescale = guidance_rescale
self._interrupt = False
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# 3. Encode input prompt
(
prompt_embeds,
negative_prompt_embeds,
prompt_attention_mask,
negative_prompt_attention_mask,
) = self.encode_prompt(
prompt=prompt,
device=device,
dtype=self.transformer.dtype,
num_images_per_prompt=num_images_per_prompt,
do_classifier_free_guidance=self.do_classifier_free_guidance,
negative_prompt=negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
prompt_attention_mask=prompt_attention_mask,
negative_prompt_attention_mask=negative_prompt_attention_mask,
max_sequence_length=77,
text_encoder_index=0,
)
(
prompt_embeds_2,
negative_prompt_embeds_2,
prompt_attention_mask_2,
negative_prompt_attention_mask_2,
) = self.encode_prompt(
prompt=prompt,
device=device,
dtype=self.transformer.dtype,
num_images_per_prompt=num_images_per_prompt,
do_classifier_free_guidance=self.do_classifier_free_guidance,
negative_prompt=negative_prompt,
prompt_embeds=prompt_embeds_2,
negative_prompt_embeds=negative_prompt_embeds_2,
prompt_attention_mask=prompt_attention_mask_2,
negative_prompt_attention_mask=negative_prompt_attention_mask_2,
max_sequence_length=256,
text_encoder_index=1,
)
# 4. Preprocess image
init_image = self.image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
map = self.mask_processor.preprocess(
map,
height=height // self.vae_scale_factor,
width=width // self.vae_scale_factor,
).to(device)
# 5. Prepare timesteps
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler, num_inference_steps, device, timesteps, sigmas
)
# begin diff diff change
total_time_steps = num_inference_steps
# end diff diff change
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
# 6. Prepare latent variables
num_channels_latents = self.transformer.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
init_image,
latent_timestep,
prompt_embeds.dtype,
device,
generator,
)
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 8. create image_rotary_emb, style embedding & time ids
grid_height = height // 8 // self.transformer.config.patch_size
grid_width = width // 8 // self.transformer.config.patch_size
base_size = 512 // 8 // self.transformer.config.patch_size
grid_crops_coords = get_resize_crop_region_for_grid((grid_height, grid_width), base_size)
image_rotary_emb = get_2d_rotary_pos_embed(
self.transformer.inner_dim // self.transformer.num_heads,
grid_crops_coords,
(grid_height, grid_width),
)
style = torch.tensor([0], device=device)
target_size = target_size or (height, width)
add_time_ids = list(original_size + target_size + crops_coords_top_left)
add_time_ids = torch.tensor([add_time_ids], dtype=prompt_embeds.dtype)
if self.do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask])
prompt_embeds_2 = torch.cat([negative_prompt_embeds_2, prompt_embeds_2])
prompt_attention_mask_2 = torch.cat([negative_prompt_attention_mask_2, prompt_attention_mask_2])
add_time_ids = torch.cat([add_time_ids] * 2, dim=0)
style = torch.cat([style] * 2, dim=0)
prompt_embeds = prompt_embeds.to(device=device)
prompt_attention_mask = prompt_attention_mask.to(device=device)
prompt_embeds_2 = prompt_embeds_2.to(device=device)
prompt_attention_mask_2 = prompt_attention_mask_2.to(device=device)
add_time_ids = add_time_ids.to(dtype=prompt_embeds.dtype, device=device).repeat(
batch_size * num_images_per_prompt, 1
)
style = style.to(device=device).repeat(batch_size * num_images_per_prompt)
# 9. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
# preparations for diff diff
original_with_noise = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
init_image,
timesteps,
prompt_embeds.dtype,
device,
generator,
)
thresholds = torch.arange(total_time_steps, dtype=map.dtype) / total_time_steps
thresholds = thresholds.unsqueeze(1).unsqueeze(1).to(device)
masks = map.squeeze() > (thresholds + (denoising_start or 0))
# end diff diff preparations
self._num_timesteps = len(timesteps)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
# diff diff
if i == 0 and denoising_start is None:
latents = original_with_noise[:1]
else:
mask = masks[i].unsqueeze(0).to(latents.dtype)
mask = mask.unsqueeze(1) # fit shape
latents = original_with_noise[i] * mask + latents * (1 - mask)
# end diff diff
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# expand scalar t to 1-D tensor to match the 1st dim of latent_model_input
t_expand = torch.tensor([t] * latent_model_input.shape[0], device=device).to(
dtype=latent_model_input.dtype
)
# predict the noise residual
noise_pred = self.transformer(
latent_model_input,
t_expand,
encoder_hidden_states=prompt_embeds,
text_embedding_mask=prompt_attention_mask,
encoder_hidden_states_t5=prompt_embeds_2,
text_embedding_mask_t5=prompt_attention_mask_2,
image_meta_size=add_time_ids,
style=style,
image_rotary_emb=image_rotary_emb,
return_dict=False,
)[0]
noise_pred, _ = noise_pred.chunk(2, dim=1)
# perform guidance
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
if self.do_classifier_free_guidance and guidance_rescale > 0.0:
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
prompt_embeds_2 = callback_outputs.pop("prompt_embeds_2", prompt_embeds_2)
negative_prompt_embeds_2 = callback_outputs.pop(
"negative_prompt_embeds_2", negative_prompt_embeds_2
)
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if XLA_AVAILABLE:
xm.mark_step()
if not output_type == "latent":
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
else:
image = latents
has_nsfw_concept = None
if has_nsfw_concept is None:
do_denormalize = [True] * image.shape[0]
else:
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)