File size: 10,352 Bytes
3a25a0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import torch

from diffusers import EulerDiscreteScheduler
from diffusers.utils.testing_utils import torch_device

from .test_schedulers import SchedulerCommonTest


class EulerDiscreteSchedulerTest(SchedulerCommonTest):
    scheduler_classes = (EulerDiscreteScheduler,)
    num_inference_steps = 10

    def get_scheduler_config(self, **kwargs):
        config = {
            "num_train_timesteps": 1100,
            "beta_start": 0.0001,
            "beta_end": 0.02,
            "beta_schedule": "linear",
        }

        config.update(**kwargs)
        return config

    def test_timesteps(self):
        for timesteps in [10, 50, 100, 1000]:
            self.check_over_configs(num_train_timesteps=timesteps)

    def test_betas(self):
        for beta_start, beta_end in zip([0.00001, 0.0001, 0.001], [0.0002, 0.002, 0.02]):
            self.check_over_configs(beta_start=beta_start, beta_end=beta_end)

    def test_schedules(self):
        for schedule in ["linear", "scaled_linear"]:
            self.check_over_configs(beta_schedule=schedule)

    def test_prediction_type(self):
        for prediction_type in ["epsilon", "v_prediction"]:
            self.check_over_configs(prediction_type=prediction_type)

    def test_timestep_type(self):
        timestep_types = ["discrete", "continuous"]
        for timestep_type in timestep_types:
            self.check_over_configs(timestep_type=timestep_type)

    def test_karras_sigmas(self):
        self.check_over_configs(use_karras_sigmas=True, sigma_min=0.02, sigma_max=700.0)

    def test_rescale_betas_zero_snr(self):
        for rescale_betas_zero_snr in [True, False]:
            self.check_over_configs(rescale_betas_zero_snr=rescale_betas_zero_snr)

    def full_loop(self, **config):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config(**config)
        scheduler = scheduler_class(**scheduler_config)

        num_inference_steps = self.num_inference_steps
        scheduler.set_timesteps(num_inference_steps)

        generator = torch.manual_seed(0)

        model = self.dummy_model()
        sample = self.dummy_sample_deter * scheduler.init_noise_sigma
        sample = sample.to(torch_device)

        for i, t in enumerate(scheduler.timesteps):
            sample = scheduler.scale_model_input(sample, t)

            model_output = model(sample, t)

            output = scheduler.step(model_output, t, sample, generator=generator)
            sample = output.prev_sample
        return sample

    def full_loop_custom_timesteps(self, **config):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config(**config)
        scheduler = scheduler_class(**scheduler_config)

        num_inference_steps = self.num_inference_steps
        scheduler.set_timesteps(num_inference_steps)
        timesteps = scheduler.timesteps
        # reset the timesteps using `timesteps`
        scheduler = scheduler_class(**scheduler_config)
        scheduler.set_timesteps(num_inference_steps=None, timesteps=timesteps)

        generator = torch.manual_seed(0)

        model = self.dummy_model()
        sample = self.dummy_sample_deter * scheduler.init_noise_sigma
        sample = sample.to(torch_device)

        for i, t in enumerate(scheduler.timesteps):
            sample = scheduler.scale_model_input(sample, t)

            model_output = model(sample, t)

            output = scheduler.step(model_output, t, sample, generator=generator)
            sample = output.prev_sample
        return sample

    def full_loop_custom_sigmas(self, **config):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config(**config)
        scheduler = scheduler_class(**scheduler_config)

        num_inference_steps = self.num_inference_steps
        scheduler.set_timesteps(num_inference_steps)
        sigmas = scheduler.sigmas
        # reset the timesteps using `sigmas`
        scheduler = scheduler_class(**scheduler_config)
        scheduler.set_timesteps(num_inference_steps=None, sigmas=sigmas)

        generator = torch.manual_seed(0)

        model = self.dummy_model()
        sample = self.dummy_sample_deter * scheduler.init_noise_sigma
        sample = sample.to(torch_device)

        for i, t in enumerate(scheduler.timesteps):
            sample = scheduler.scale_model_input(sample, t)

            model_output = model(sample, t)

            output = scheduler.step(model_output, t, sample, generator=generator)
            sample = output.prev_sample
        return sample

    def test_full_loop_no_noise(self):
        sample = self.full_loop()

        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))

        assert abs(result_sum.item() - 10.0807) < 1e-2
        assert abs(result_mean.item() - 0.0131) < 1e-3

    def test_full_loop_with_v_prediction(self):
        sample = self.full_loop(prediction_type="v_prediction")

        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))

        assert abs(result_sum.item() - 0.0002) < 1e-2
        assert abs(result_mean.item() - 2.2676e-06) < 1e-3

    def test_full_loop_device(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        scheduler.set_timesteps(self.num_inference_steps, device=torch_device)

        generator = torch.manual_seed(0)

        model = self.dummy_model()
        sample = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
        sample = sample.to(torch_device)

        for t in scheduler.timesteps:
            sample = scheduler.scale_model_input(sample, t)

            model_output = model(sample, t)

            output = scheduler.step(model_output, t, sample, generator=generator)
            sample = output.prev_sample

        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))

        assert abs(result_sum.item() - 10.0807) < 1e-2
        assert abs(result_mean.item() - 0.0131) < 1e-3

    def test_full_loop_device_karras_sigmas(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config, use_karras_sigmas=True)

        scheduler.set_timesteps(self.num_inference_steps, device=torch_device)

        generator = torch.manual_seed(0)

        model = self.dummy_model()
        sample = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
        sample = sample.to(torch_device)

        for t in scheduler.timesteps:
            sample = scheduler.scale_model_input(sample, t)

            model_output = model(sample, t)

            output = scheduler.step(model_output, t, sample, generator=generator)
            sample = output.prev_sample

        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))

        assert abs(result_sum.item() - 124.52299499511719) < 1e-2
        assert abs(result_mean.item() - 0.16213932633399963) < 1e-3

    def test_full_loop_with_noise(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        scheduler.set_timesteps(self.num_inference_steps)

        generator = torch.manual_seed(0)

        model = self.dummy_model()
        sample = self.dummy_sample_deter * scheduler.init_noise_sigma

        # add noise
        t_start = self.num_inference_steps - 2
        noise = self.dummy_noise_deter
        noise = noise.to(sample.device)
        timesteps = scheduler.timesteps[t_start * scheduler.order :]
        sample = scheduler.add_noise(sample, noise, timesteps[:1])

        for i, t in enumerate(timesteps):
            sample = scheduler.scale_model_input(sample, t)

            model_output = model(sample, t)

            output = scheduler.step(model_output, t, sample, generator=generator)
            sample = output.prev_sample

        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))

        assert abs(result_sum.item() - 57062.9297) < 1e-2, f" expected result sum 57062.9297, but get {result_sum}"
        assert abs(result_mean.item() - 74.3007) < 1e-3, f" expected result mean 74.3007, but get {result_mean}"

    def test_custom_timesteps(self):
        for prediction_type in ["epsilon", "sample", "v_prediction"]:
            for interpolation_type in ["linear", "log_linear"]:
                for final_sigmas_type in ["sigma_min", "zero"]:
                    sample = self.full_loop(
                        prediction_type=prediction_type,
                        interpolation_type=interpolation_type,
                        final_sigmas_type=final_sigmas_type,
                    )
                    sample_custom_timesteps = self.full_loop_custom_timesteps(
                        prediction_type=prediction_type,
                        interpolation_type=interpolation_type,
                        final_sigmas_type=final_sigmas_type,
                    )
                    assert (
                        torch.sum(torch.abs(sample - sample_custom_timesteps)) < 1e-5
                    ), f"Scheduler outputs are not identical for prediction_type: {prediction_type}, interpolation_type: {interpolation_type} and final_sigmas_type: {final_sigmas_type}"

    def test_custom_sigmas(self):
        for prediction_type in ["epsilon", "sample", "v_prediction"]:
            for final_sigmas_type in ["sigma_min", "zero"]:
                sample = self.full_loop(
                    prediction_type=prediction_type,
                    final_sigmas_type=final_sigmas_type,
                )
                sample_custom_timesteps = self.full_loop_custom_sigmas(
                    prediction_type=prediction_type,
                    final_sigmas_type=final_sigmas_type,
                )
                assert (
                    torch.sum(torch.abs(sample - sample_custom_timesteps)) < 1e-5
                ), f"Scheduler outputs are not identical for prediction_type: {prediction_type} and final_sigmas_type: {final_sigmas_type}"