File size: 12,851 Bytes
3a25a0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import tempfile
import unittest

import torch

from diffusers import UNet2DConditionModel
from diffusers.training_utils import EMAModel
from diffusers.utils.testing_utils import enable_full_determinism, skip_mps, torch_device


enable_full_determinism()


class EMAModelTests(unittest.TestCase):
    model_id = "hf-internal-testing/tiny-stable-diffusion-pipe"
    batch_size = 1
    prompt_length = 77
    text_encoder_hidden_dim = 32
    num_in_channels = 4
    latent_height = latent_width = 64
    generator = torch.manual_seed(0)

    def get_models(self, decay=0.9999):
        unet = UNet2DConditionModel.from_pretrained(self.model_id, subfolder="unet")
        unet = unet.to(torch_device)
        ema_unet = EMAModel(unet.parameters(), decay=decay, model_cls=UNet2DConditionModel, model_config=unet.config)
        return unet, ema_unet

    def get_dummy_inputs(self):
        noisy_latents = torch.randn(
            self.batch_size, self.num_in_channels, self.latent_height, self.latent_width, generator=self.generator
        ).to(torch_device)
        timesteps = torch.randint(0, 1000, size=(self.batch_size,), generator=self.generator).to(torch_device)
        encoder_hidden_states = torch.randn(
            self.batch_size, self.prompt_length, self.text_encoder_hidden_dim, generator=self.generator
        ).to(torch_device)
        return noisy_latents, timesteps, encoder_hidden_states

    def simulate_backprop(self, unet):
        updated_state_dict = {}
        for k, param in unet.state_dict().items():
            updated_param = torch.randn_like(param) + (param * torch.randn_like(param))
            updated_state_dict.update({k: updated_param})
        unet.load_state_dict(updated_state_dict)
        return unet

    def test_optimization_steps_updated(self):
        unet, ema_unet = self.get_models()
        # Take the first (hypothetical) EMA step.
        ema_unet.step(unet.parameters())
        assert ema_unet.optimization_step == 1

        # Take two more.
        for _ in range(2):
            ema_unet.step(unet.parameters())
        assert ema_unet.optimization_step == 3

    def test_shadow_params_not_updated(self):
        unet, ema_unet = self.get_models()
        # Since the `unet` is not being updated (i.e., backprop'd)
        # there won't be any difference between the `params` of `unet`
        # and `ema_unet` even if we call `ema_unet.step(unet.parameters())`.
        ema_unet.step(unet.parameters())
        orig_params = list(unet.parameters())
        for s_param, param in zip(ema_unet.shadow_params, orig_params):
            assert torch.allclose(s_param, param)

        # The above holds true even if we call `ema.step()` multiple times since
        # `unet` params are still not being updated.
        for _ in range(4):
            ema_unet.step(unet.parameters())
        for s_param, param in zip(ema_unet.shadow_params, orig_params):
            assert torch.allclose(s_param, param)

    def test_shadow_params_updated(self):
        unet, ema_unet = self.get_models()
        # Here we simulate the parameter updates for `unet`. Since there might
        # be some parameters which are initialized to zero we take extra care to
        # initialize their values to something non-zero before the multiplication.
        unet_pseudo_updated_step_one = self.simulate_backprop(unet)

        # Take the EMA step.
        ema_unet.step(unet_pseudo_updated_step_one.parameters())

        # Now the EMA'd parameters won't be equal to the original model parameters.
        orig_params = list(unet_pseudo_updated_step_one.parameters())
        for s_param, param in zip(ema_unet.shadow_params, orig_params):
            assert ~torch.allclose(s_param, param)

        # Ensure this is the case when we take multiple EMA steps.
        for _ in range(4):
            ema_unet.step(unet.parameters())
        for s_param, param in zip(ema_unet.shadow_params, orig_params):
            assert ~torch.allclose(s_param, param)

    def test_consecutive_shadow_params_updated(self):
        # If we call EMA step after a backpropagation consecutively for two times,
        # the shadow params from those two steps should be different.
        unet, ema_unet = self.get_models()

        # First backprop + EMA
        unet_step_one = self.simulate_backprop(unet)
        ema_unet.step(unet_step_one.parameters())
        step_one_shadow_params = ema_unet.shadow_params

        # Second backprop + EMA
        unet_step_two = self.simulate_backprop(unet_step_one)
        ema_unet.step(unet_step_two.parameters())
        step_two_shadow_params = ema_unet.shadow_params

        for step_one, step_two in zip(step_one_shadow_params, step_two_shadow_params):
            assert ~torch.allclose(step_one, step_two)

    def test_zero_decay(self):
        # If there's no decay even if there are backprops, EMA steps
        # won't take any effect i.e., the shadow params would remain the
        # same.
        unet, ema_unet = self.get_models(decay=0.0)
        unet_step_one = self.simulate_backprop(unet)
        ema_unet.step(unet_step_one.parameters())
        step_one_shadow_params = ema_unet.shadow_params

        unet_step_two = self.simulate_backprop(unet_step_one)
        ema_unet.step(unet_step_two.parameters())
        step_two_shadow_params = ema_unet.shadow_params

        for step_one, step_two in zip(step_one_shadow_params, step_two_shadow_params):
            assert torch.allclose(step_one, step_two)

    @skip_mps
    def test_serialization(self):
        unet, ema_unet = self.get_models()
        noisy_latents, timesteps, encoder_hidden_states = self.get_dummy_inputs()

        with tempfile.TemporaryDirectory() as tmpdir:
            ema_unet.save_pretrained(tmpdir)
            loaded_unet = UNet2DConditionModel.from_pretrained(tmpdir, model_cls=UNet2DConditionModel)
            loaded_unet = loaded_unet.to(unet.device)

        # Since no EMA step has been performed the outputs should match.
        output = unet(noisy_latents, timesteps, encoder_hidden_states).sample
        output_loaded = loaded_unet(noisy_latents, timesteps, encoder_hidden_states).sample

        assert torch.allclose(output, output_loaded, atol=1e-4)


class EMAModelTestsForeach(unittest.TestCase):
    model_id = "hf-internal-testing/tiny-stable-diffusion-pipe"
    batch_size = 1
    prompt_length = 77
    text_encoder_hidden_dim = 32
    num_in_channels = 4
    latent_height = latent_width = 64
    generator = torch.manual_seed(0)

    def get_models(self, decay=0.9999):
        unet = UNet2DConditionModel.from_pretrained(self.model_id, subfolder="unet")
        unet = unet.to(torch_device)
        ema_unet = EMAModel(
            unet.parameters(), decay=decay, model_cls=UNet2DConditionModel, model_config=unet.config, foreach=True
        )
        return unet, ema_unet

    def get_dummy_inputs(self):
        noisy_latents = torch.randn(
            self.batch_size, self.num_in_channels, self.latent_height, self.latent_width, generator=self.generator
        ).to(torch_device)
        timesteps = torch.randint(0, 1000, size=(self.batch_size,), generator=self.generator).to(torch_device)
        encoder_hidden_states = torch.randn(
            self.batch_size, self.prompt_length, self.text_encoder_hidden_dim, generator=self.generator
        ).to(torch_device)
        return noisy_latents, timesteps, encoder_hidden_states

    def simulate_backprop(self, unet):
        updated_state_dict = {}
        for k, param in unet.state_dict().items():
            updated_param = torch.randn_like(param) + (param * torch.randn_like(param))
            updated_state_dict.update({k: updated_param})
        unet.load_state_dict(updated_state_dict)
        return unet

    def test_optimization_steps_updated(self):
        unet, ema_unet = self.get_models()
        # Take the first (hypothetical) EMA step.
        ema_unet.step(unet.parameters())
        assert ema_unet.optimization_step == 1

        # Take two more.
        for _ in range(2):
            ema_unet.step(unet.parameters())
        assert ema_unet.optimization_step == 3

    def test_shadow_params_not_updated(self):
        unet, ema_unet = self.get_models()
        # Since the `unet` is not being updated (i.e., backprop'd)
        # there won't be any difference between the `params` of `unet`
        # and `ema_unet` even if we call `ema_unet.step(unet.parameters())`.
        ema_unet.step(unet.parameters())
        orig_params = list(unet.parameters())
        for s_param, param in zip(ema_unet.shadow_params, orig_params):
            assert torch.allclose(s_param, param)

        # The above holds true even if we call `ema.step()` multiple times since
        # `unet` params are still not being updated.
        for _ in range(4):
            ema_unet.step(unet.parameters())
        for s_param, param in zip(ema_unet.shadow_params, orig_params):
            assert torch.allclose(s_param, param)

    def test_shadow_params_updated(self):
        unet, ema_unet = self.get_models()
        # Here we simulate the parameter updates for `unet`. Since there might
        # be some parameters which are initialized to zero we take extra care to
        # initialize their values to something non-zero before the multiplication.
        unet_pseudo_updated_step_one = self.simulate_backprop(unet)

        # Take the EMA step.
        ema_unet.step(unet_pseudo_updated_step_one.parameters())

        # Now the EMA'd parameters won't be equal to the original model parameters.
        orig_params = list(unet_pseudo_updated_step_one.parameters())
        for s_param, param in zip(ema_unet.shadow_params, orig_params):
            assert ~torch.allclose(s_param, param)

        # Ensure this is the case when we take multiple EMA steps.
        for _ in range(4):
            ema_unet.step(unet.parameters())
        for s_param, param in zip(ema_unet.shadow_params, orig_params):
            assert ~torch.allclose(s_param, param)

    def test_consecutive_shadow_params_updated(self):
        # If we call EMA step after a backpropagation consecutively for two times,
        # the shadow params from those two steps should be different.
        unet, ema_unet = self.get_models()

        # First backprop + EMA
        unet_step_one = self.simulate_backprop(unet)
        ema_unet.step(unet_step_one.parameters())
        step_one_shadow_params = ema_unet.shadow_params

        # Second backprop + EMA
        unet_step_two = self.simulate_backprop(unet_step_one)
        ema_unet.step(unet_step_two.parameters())
        step_two_shadow_params = ema_unet.shadow_params

        for step_one, step_two in zip(step_one_shadow_params, step_two_shadow_params):
            assert ~torch.allclose(step_one, step_two)

    def test_zero_decay(self):
        # If there's no decay even if there are backprops, EMA steps
        # won't take any effect i.e., the shadow params would remain the
        # same.
        unet, ema_unet = self.get_models(decay=0.0)
        unet_step_one = self.simulate_backprop(unet)
        ema_unet.step(unet_step_one.parameters())
        step_one_shadow_params = ema_unet.shadow_params

        unet_step_two = self.simulate_backprop(unet_step_one)
        ema_unet.step(unet_step_two.parameters())
        step_two_shadow_params = ema_unet.shadow_params

        for step_one, step_two in zip(step_one_shadow_params, step_two_shadow_params):
            assert torch.allclose(step_one, step_two)

    @skip_mps
    def test_serialization(self):
        unet, ema_unet = self.get_models()
        noisy_latents, timesteps, encoder_hidden_states = self.get_dummy_inputs()

        with tempfile.TemporaryDirectory() as tmpdir:
            ema_unet.save_pretrained(tmpdir)
            loaded_unet = UNet2DConditionModel.from_pretrained(tmpdir, model_cls=UNet2DConditionModel)
            loaded_unet = loaded_unet.to(unet.device)

        # Since no EMA step has been performed the outputs should match.
        output = unet(noisy_latents, timesteps, encoder_hidden_states).sample
        output_loaded = loaded_unet(noisy_latents, timesteps, encoder_hidden_states).sample

        assert torch.allclose(output, output_loaded, atol=1e-4)