File size: 11,286 Bytes
3a25a0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import PIL.Image
import torch
from diffusers.image_processor import VaeImageProcessor
class ImageProcessorTest(unittest.TestCase):
@property
def dummy_sample(self):
batch_size = 1
num_channels = 3
height = 8
width = 8
sample = torch.rand((batch_size, num_channels, height, width))
return sample
@property
def dummy_mask(self):
batch_size = 1
num_channels = 1
height = 8
width = 8
sample = torch.rand((batch_size, num_channels, height, width))
return sample
def to_np(self, image):
if isinstance(image[0], PIL.Image.Image):
return np.stack([np.array(i) for i in image], axis=0)
elif isinstance(image, torch.Tensor):
return image.cpu().numpy().transpose(0, 2, 3, 1)
return image
def test_vae_image_processor_pt(self):
image_processor = VaeImageProcessor(do_resize=False, do_normalize=True)
input_pt = self.dummy_sample
input_np = self.to_np(input_pt)
for output_type in ["pt", "np", "pil"]:
out = image_processor.postprocess(
image_processor.preprocess(input_pt),
output_type=output_type,
)
out_np = self.to_np(out)
in_np = (input_np * 255).round() if output_type == "pil" else input_np
assert (
np.abs(in_np - out_np).max() < 1e-6
), f"decoded output does not match input for output_type {output_type}"
def test_vae_image_processor_np(self):
image_processor = VaeImageProcessor(do_resize=False, do_normalize=True)
input_np = self.dummy_sample.cpu().numpy().transpose(0, 2, 3, 1)
for output_type in ["pt", "np", "pil"]:
out = image_processor.postprocess(image_processor.preprocess(input_np), output_type=output_type)
out_np = self.to_np(out)
in_np = (input_np * 255).round() if output_type == "pil" else input_np
assert (
np.abs(in_np - out_np).max() < 1e-6
), f"decoded output does not match input for output_type {output_type}"
def test_vae_image_processor_pil(self):
image_processor = VaeImageProcessor(do_resize=False, do_normalize=True)
input_np = self.dummy_sample.cpu().numpy().transpose(0, 2, 3, 1)
input_pil = image_processor.numpy_to_pil(input_np)
for output_type in ["pt", "np", "pil"]:
out = image_processor.postprocess(image_processor.preprocess(input_pil), output_type=output_type)
for i, o in zip(input_pil, out):
in_np = np.array(i)
out_np = self.to_np(out) if output_type == "pil" else (self.to_np(out) * 255).round()
assert (
np.abs(in_np - out_np).max() < 1e-6
), f"decoded output does not match input for output_type {output_type}"
def test_preprocess_input_3d(self):
image_processor = VaeImageProcessor(do_resize=False, do_normalize=False)
input_pt_4d = self.dummy_sample
input_pt_3d = input_pt_4d.squeeze(0)
out_pt_4d = image_processor.postprocess(
image_processor.preprocess(input_pt_4d),
output_type="np",
)
out_pt_3d = image_processor.postprocess(
image_processor.preprocess(input_pt_3d),
output_type="np",
)
input_np_4d = self.to_np(self.dummy_sample)
input_np_3d = input_np_4d.squeeze(0)
out_np_4d = image_processor.postprocess(
image_processor.preprocess(input_np_4d),
output_type="np",
)
out_np_3d = image_processor.postprocess(
image_processor.preprocess(input_np_3d),
output_type="np",
)
assert np.abs(out_pt_4d - out_pt_3d).max() < 1e-6
assert np.abs(out_np_4d - out_np_3d).max() < 1e-6
def test_preprocess_input_list(self):
image_processor = VaeImageProcessor(do_resize=False, do_normalize=False)
input_pt_4d = self.dummy_sample
input_pt_list = list(input_pt_4d)
out_pt_4d = image_processor.postprocess(
image_processor.preprocess(input_pt_4d),
output_type="np",
)
out_pt_list = image_processor.postprocess(
image_processor.preprocess(input_pt_list),
output_type="np",
)
input_np_4d = self.to_np(self.dummy_sample)
input_np_list = list(input_np_4d)
out_np_4d = image_processor.postprocess(
image_processor.preprocess(input_np_4d),
output_type="np",
)
out_np_list = image_processor.postprocess(
image_processor.preprocess(input_np_list),
output_type="np",
)
assert np.abs(out_pt_4d - out_pt_list).max() < 1e-6
assert np.abs(out_np_4d - out_np_list).max() < 1e-6
def test_preprocess_input_mask_3d(self):
image_processor = VaeImageProcessor(
do_resize=False, do_normalize=False, do_binarize=True, do_convert_grayscale=True
)
input_pt_4d = self.dummy_mask
input_pt_3d = input_pt_4d.squeeze(0)
input_pt_2d = input_pt_3d.squeeze(0)
out_pt_4d = image_processor.postprocess(
image_processor.preprocess(input_pt_4d),
output_type="np",
)
out_pt_3d = image_processor.postprocess(
image_processor.preprocess(input_pt_3d),
output_type="np",
)
out_pt_2d = image_processor.postprocess(
image_processor.preprocess(input_pt_2d),
output_type="np",
)
input_np_4d = self.to_np(self.dummy_mask)
input_np_3d = input_np_4d.squeeze(0)
input_np_3d_1 = input_np_4d.squeeze(-1)
input_np_2d = input_np_3d.squeeze(-1)
out_np_4d = image_processor.postprocess(
image_processor.preprocess(input_np_4d),
output_type="np",
)
out_np_3d = image_processor.postprocess(
image_processor.preprocess(input_np_3d),
output_type="np",
)
out_np_3d_1 = image_processor.postprocess(
image_processor.preprocess(input_np_3d_1),
output_type="np",
)
out_np_2d = image_processor.postprocess(
image_processor.preprocess(input_np_2d),
output_type="np",
)
assert np.abs(out_pt_4d - out_pt_3d).max() == 0
assert np.abs(out_pt_4d - out_pt_2d).max() == 0
assert np.abs(out_np_4d - out_np_3d).max() == 0
assert np.abs(out_np_4d - out_np_3d_1).max() == 0
assert np.abs(out_np_4d - out_np_2d).max() == 0
def test_preprocess_input_mask_list(self):
image_processor = VaeImageProcessor(do_resize=False, do_normalize=False, do_convert_grayscale=True)
input_pt_4d = self.dummy_mask
input_pt_3d = input_pt_4d.squeeze(0)
input_pt_2d = input_pt_3d.squeeze(0)
inputs_pt = [input_pt_4d, input_pt_3d, input_pt_2d]
inputs_pt_list = [[input_pt] for input_pt in inputs_pt]
for input_pt, input_pt_list in zip(inputs_pt, inputs_pt_list):
out_pt = image_processor.postprocess(
image_processor.preprocess(input_pt),
output_type="np",
)
out_pt_list = image_processor.postprocess(
image_processor.preprocess(input_pt_list),
output_type="np",
)
assert np.abs(out_pt - out_pt_list).max() < 1e-6
input_np_4d = self.to_np(self.dummy_mask)
input_np_3d = input_np_4d.squeeze(0)
input_np_2d = input_np_3d.squeeze(-1)
inputs_np = [input_np_4d, input_np_3d, input_np_2d]
inputs_np_list = [[input_np] for input_np in inputs_np]
for input_np, input_np_list in zip(inputs_np, inputs_np_list):
out_np = image_processor.postprocess(
image_processor.preprocess(input_np),
output_type="np",
)
out_np_list = image_processor.postprocess(
image_processor.preprocess(input_np_list),
output_type="np",
)
assert np.abs(out_np - out_np_list).max() < 1e-6
def test_preprocess_input_mask_3d_batch(self):
image_processor = VaeImageProcessor(do_resize=False, do_normalize=False, do_convert_grayscale=True)
# create a dummy mask input with batch_size 2
dummy_mask_batch = torch.cat([self.dummy_mask] * 2, axis=0)
# squeeze out the channel dimension
input_pt_3d = dummy_mask_batch.squeeze(1)
input_np_3d = self.to_np(dummy_mask_batch).squeeze(-1)
input_pt_3d_list = list(input_pt_3d)
input_np_3d_list = list(input_np_3d)
out_pt_3d = image_processor.postprocess(
image_processor.preprocess(input_pt_3d),
output_type="np",
)
out_pt_3d_list = image_processor.postprocess(
image_processor.preprocess(input_pt_3d_list),
output_type="np",
)
assert np.abs(out_pt_3d - out_pt_3d_list).max() < 1e-6
out_np_3d = image_processor.postprocess(
image_processor.preprocess(input_np_3d),
output_type="np",
)
out_np_3d_list = image_processor.postprocess(
image_processor.preprocess(input_np_3d_list),
output_type="np",
)
assert np.abs(out_np_3d - out_np_3d_list).max() < 1e-6
def test_vae_image_processor_resize_pt(self):
image_processor = VaeImageProcessor(do_resize=True, vae_scale_factor=1)
input_pt = self.dummy_sample
b, c, h, w = input_pt.shape
scale = 2
out_pt = image_processor.resize(image=input_pt, height=h // scale, width=w // scale)
exp_pt_shape = (b, c, h // scale, w // scale)
assert (
out_pt.shape == exp_pt_shape
), f"resized image output shape '{out_pt.shape}' didn't match expected shape '{exp_pt_shape}'."
def test_vae_image_processor_resize_np(self):
image_processor = VaeImageProcessor(do_resize=True, vae_scale_factor=1)
input_pt = self.dummy_sample
b, c, h, w = input_pt.shape
scale = 2
input_np = self.to_np(input_pt)
out_np = image_processor.resize(image=input_np, height=h // scale, width=w // scale)
exp_np_shape = (b, h // scale, w // scale, c)
assert (
out_np.shape == exp_np_shape
), f"resized image output shape '{out_np.shape}' didn't match expected shape '{exp_np_shape}'."
|