File size: 4,115 Bytes
3a25a0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import os
import sys
import tempfile

import safetensors


sys.path.append("..")
from test_examples_utils import ExamplesTestsAccelerate, run_command  # noqa: E402


logging.basicConfig(level=logging.DEBUG)

logger = logging.getLogger()
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)


class DreamBoothLoRASDXLWithEDM(ExamplesTestsAccelerate):
    def test_dreambooth_lora_sdxl_with_edm(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            test_args = f"""
                examples/dreambooth/train_dreambooth_lora_sdxl.py
                --pretrained_model_name_or_path hf-internal-testing/tiny-stable-diffusion-xl-pipe
                --do_edm_style_training
                --instance_data_dir docs/source/en/imgs
                --instance_prompt photo
                --resolution 64
                --train_batch_size 1
                --gradient_accumulation_steps 1
                --max_train_steps 2
                --learning_rate 5.0e-04
                --scale_lr
                --lr_scheduler constant
                --lr_warmup_steps 0
                --output_dir {tmpdir}
                """.split()

            run_command(self._launch_args + test_args)
            # save_pretrained smoke test
            self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")))

            # make sure the state_dict has the correct naming in the parameters.
            lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))
            is_lora = all("lora" in k for k in lora_state_dict.keys())
            self.assertTrue(is_lora)

            # when not training the text encoder, all the parameters in the state dict should start
            # with `"unet"` in their names.
            starts_with_unet = all(key.startswith("unet") for key in lora_state_dict.keys())
            self.assertTrue(starts_with_unet)

    def test_dreambooth_lora_playground(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            test_args = f"""
                examples/dreambooth/train_dreambooth_lora_sdxl.py
                --pretrained_model_name_or_path hf-internal-testing/tiny-playground-v2-5-pipe
                --instance_data_dir docs/source/en/imgs
                --instance_prompt photo
                --resolution 64
                --train_batch_size 1
                --gradient_accumulation_steps 1
                --max_train_steps 2
                --learning_rate 5.0e-04
                --scale_lr
                --lr_scheduler constant
                --lr_warmup_steps 0
                --output_dir {tmpdir}
                """.split()

            run_command(self._launch_args + test_args)
            # save_pretrained smoke test
            self.assertTrue(os.path.isfile(os.path.join(tmpdir, "pytorch_lora_weights.safetensors")))

            # make sure the state_dict has the correct naming in the parameters.
            lora_state_dict = safetensors.torch.load_file(os.path.join(tmpdir, "pytorch_lora_weights.safetensors"))
            is_lora = all("lora" in k for k in lora_state_dict.keys())
            self.assertTrue(is_lora)

            # when not training the text encoder, all the parameters in the state dict should start
            # with `"unet"` in their names.
            starts_with_unet = all(key.startswith("unet") for key in lora_state_dict.keys())
            self.assertTrue(starts_with_unet)