File size: 38,339 Bytes
3a25a0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import copy
import logging
import math
import os
import shutil
from contextlib import nullcontext
from pathlib import Path

import torch
import torch.nn.functional as F
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration, set_seed
from datasets import load_dataset
from peft import LoraConfig
from peft.utils import get_peft_model_state_dict
from PIL import Image
from PIL.ImageOps import exif_transpose
from torch.utils.data import DataLoader, Dataset, default_collate
from torchvision import transforms
from transformers import (
    CLIPTextModelWithProjection,
    CLIPTokenizer,
)

import diffusers.optimization
from diffusers import AmusedPipeline, AmusedScheduler, EMAModel, UVit2DModel, VQModel
from diffusers.loaders import AmusedLoraLoaderMixin
from diffusers.utils import is_wandb_available


if is_wandb_available():
    import wandb

logger = get_logger(__name__, log_level="INFO")


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default=None,
        required=True,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--revision",
        type=str,
        default=None,
        required=False,
        help="Revision of pretrained model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--variant",
        type=str,
        default=None,
        help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
    )
    parser.add_argument(
        "--instance_data_dataset",
        type=str,
        default=None,
        required=False,
        help="A Hugging Face dataset containing the training images",
    )
    parser.add_argument(
        "--instance_data_dir",
        type=str,
        default=None,
        required=False,
        help="A folder containing the training data of instance images.",
    )
    parser.add_argument(
        "--instance_data_image", type=str, default=None, required=False, help="A single training image"
    )
    parser.add_argument(
        "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
    )
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0,
        help=(
            "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
        ),
    )
    parser.add_argument(
        "--allow_tf32",
        action="store_true",
        help=(
            "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
            " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
        ),
    )
    parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.")
    parser.add_argument("--ema_decay", type=float, default=0.9999)
    parser.add_argument("--ema_update_after_step", type=int, default=0)
    parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
    parser.add_argument(
        "--output_dir",
        type=str,
        default="muse_training",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=None,
        help="Total number of training steps to perform.  If provided, overrides num_train_epochs.",
    )
    parser.add_argument(
        "--checkpointing_steps",
        type=int,
        default=500,
        help=(
            "Save a checkpoint of the training state every X updates. Checkpoints can be used for resuming training via `--resume_from_checkpoint`. "
            "In the case that the checkpoint is better than the final trained model, the checkpoint can also be used for inference."
            "Using a checkpoint for inference requires separate loading of the original pipeline and the individual checkpointed model components."
            "See https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint for step by step"
            "instructions."
        ),
    )
    parser.add_argument(
        "--logging_steps",
        type=int,
        default=50,
    )
    parser.add_argument(
        "--checkpoints_total_limit",
        type=int,
        default=None,
        help=(
            "Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`."
            " See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state"
            " for more details"
        ),
    )
    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        default=None,
        help=(
            "Whether training should be resumed from a previous checkpoint. Use a path saved by"
            ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
        ),
    )
    parser.add_argument(
        "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=0.0003,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--scale_lr",
        action="store_true",
        default=False,
        help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="constant",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
    parser.add_argument(
        "--validation_steps",
        type=int,
        default=100,
        help=(
            "Run validation every X steps. Validation consists of running the prompt"
            " `args.validation_prompt` multiple times: `args.num_validation_images`"
            " and logging the images."
        ),
    )
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default=None,
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to the value of accelerate config of the current system or the"
            " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
        ),
    )
    parser.add_argument(
        "--report_to",
        type=str,
        default="wandb",
        help=(
            'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
            ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
        ),
    )
    parser.add_argument("--validation_prompts", type=str, nargs="*")
    parser.add_argument(
        "--resolution",
        type=int,
        default=512,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument("--split_vae_encode", type=int, required=False, default=None)
    parser.add_argument("--min_masking_rate", type=float, default=0.0)
    parser.add_argument("--cond_dropout_prob", type=float, default=0.0)
    parser.add_argument("--max_grad_norm", default=None, type=float, help="Max gradient norm.", required=False)
    parser.add_argument("--use_lora", action="store_true", help="Fine tune the model using LoRa")
    parser.add_argument("--text_encoder_use_lora", action="store_true", help="Fine tune the model using LoRa")
    parser.add_argument("--lora_r", default=16, type=int)
    parser.add_argument("--lora_alpha", default=32, type=int)
    parser.add_argument("--lora_target_modules", default=["to_q", "to_k", "to_v"], type=str, nargs="+")
    parser.add_argument("--text_encoder_lora_r", default=16, type=int)
    parser.add_argument("--text_encoder_lora_alpha", default=32, type=int)
    parser.add_argument("--text_encoder_lora_target_modules", default=["to_q", "to_k", "to_v"], type=str, nargs="+")
    parser.add_argument("--train_text_encoder", action="store_true")
    parser.add_argument("--image_key", type=str, required=False)
    parser.add_argument("--prompt_key", type=str, required=False)
    parser.add_argument(
        "--gradient_checkpointing",
        action="store_true",
        help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
    )
    parser.add_argument("--prompt_prefix", type=str, required=False, default=None)

    args = parser.parse_args()

    if args.report_to == "wandb":
        if not is_wandb_available():
            raise ImportError("Make sure to install wandb if you want to use it for logging during training.")

    num_datasources = sum(
        [x is not None for x in [args.instance_data_dir, args.instance_data_image, args.instance_data_dataset]]
    )

    if num_datasources != 1:
        raise ValueError(
            "provide one and only one of `--instance_data_dir`, `--instance_data_image`, or `--instance_data_dataset`"
        )

    if args.instance_data_dir is not None:
        if not os.path.exists(args.instance_data_dir):
            raise ValueError(f"Does not exist: `--args.instance_data_dir` {args.instance_data_dir}")

    if args.instance_data_image is not None:
        if not os.path.exists(args.instance_data_image):
            raise ValueError(f"Does not exist: `--args.instance_data_image` {args.instance_data_image}")

    if args.instance_data_dataset is not None and (args.image_key is None or args.prompt_key is None):
        raise ValueError("`--instance_data_dataset` requires setting `--image_key` and `--prompt_key`")

    return args


class InstanceDataRootDataset(Dataset):
    def __init__(
        self,
        instance_data_root,
        tokenizer,
        size=512,
    ):
        self.size = size
        self.tokenizer = tokenizer
        self.instance_images_path = list(Path(instance_data_root).iterdir())

    def __len__(self):
        return len(self.instance_images_path)

    def __getitem__(self, index):
        image_path = self.instance_images_path[index % len(self.instance_images_path)]
        instance_image = Image.open(image_path)
        rv = process_image(instance_image, self.size)

        prompt = os.path.splitext(os.path.basename(image_path))[0]
        rv["prompt_input_ids"] = tokenize_prompt(self.tokenizer, prompt)[0]
        return rv


class InstanceDataImageDataset(Dataset):
    def __init__(
        self,
        instance_data_image,
        train_batch_size,
        size=512,
    ):
        self.value = process_image(Image.open(instance_data_image), size)
        self.train_batch_size = train_batch_size

    def __len__(self):
        # Needed so a full batch of the data can be returned. Otherwise will return
        # batches of size 1
        return self.train_batch_size

    def __getitem__(self, index):
        return self.value


class HuggingFaceDataset(Dataset):
    def __init__(
        self,
        hf_dataset,
        tokenizer,
        image_key,
        prompt_key,
        prompt_prefix=None,
        size=512,
    ):
        self.size = size
        self.image_key = image_key
        self.prompt_key = prompt_key
        self.tokenizer = tokenizer
        self.hf_dataset = hf_dataset
        self.prompt_prefix = prompt_prefix

    def __len__(self):
        return len(self.hf_dataset)

    def __getitem__(self, index):
        item = self.hf_dataset[index]

        rv = process_image(item[self.image_key], self.size)

        prompt = item[self.prompt_key]

        if self.prompt_prefix is not None:
            prompt = self.prompt_prefix + prompt

        rv["prompt_input_ids"] = tokenize_prompt(self.tokenizer, prompt)[0]

        return rv


def process_image(image, size):
    image = exif_transpose(image)

    if not image.mode == "RGB":
        image = image.convert("RGB")

    orig_height = image.height
    orig_width = image.width

    image = transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR)(image)

    c_top, c_left, _, _ = transforms.RandomCrop.get_params(image, output_size=(size, size))
    image = transforms.functional.crop(image, c_top, c_left, size, size)

    image = transforms.ToTensor()(image)

    micro_conds = torch.tensor(
        [orig_width, orig_height, c_top, c_left, 6.0],
    )

    return {"image": image, "micro_conds": micro_conds}


def tokenize_prompt(tokenizer, prompt):
    return tokenizer(
        prompt,
        truncation=True,
        padding="max_length",
        max_length=77,
        return_tensors="pt",
    ).input_ids


def encode_prompt(text_encoder, input_ids):
    outputs = text_encoder(input_ids, return_dict=True, output_hidden_states=True)
    encoder_hidden_states = outputs.hidden_states[-2]
    cond_embeds = outputs[0]
    return encoder_hidden_states, cond_embeds


def main(args):
    if args.allow_tf32:
        torch.backends.cuda.matmul.allow_tf32 = True

    logging_dir = Path(args.output_dir, args.logging_dir)

    accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)

    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
        log_with=args.report_to,
        project_config=accelerator_project_config,
    )
    # Disable AMP for MPS.
    if torch.backends.mps.is_available():
        accelerator.native_amp = False

    if accelerator.is_main_process:
        os.makedirs(args.output_dir, exist_ok=True)

    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)

    if accelerator.is_main_process:
        accelerator.init_trackers("amused", config=vars(copy.deepcopy(args)))

    if args.seed is not None:
        set_seed(args.seed)

    # TODO - will have to fix loading if training text encoder
    text_encoder = CLIPTextModelWithProjection.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant
    )
    tokenizer = CLIPTokenizer.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision, variant=args.variant
    )
    vq_model = VQModel.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="vqvae", revision=args.revision, variant=args.variant
    )

    if args.train_text_encoder:
        if args.text_encoder_use_lora:
            lora_config = LoraConfig(
                r=args.text_encoder_lora_r,
                lora_alpha=args.text_encoder_lora_alpha,
                target_modules=args.text_encoder_lora_target_modules,
            )
            text_encoder.add_adapter(lora_config)
        text_encoder.train()
        text_encoder.requires_grad_(True)
    else:
        text_encoder.eval()
        text_encoder.requires_grad_(False)

    vq_model.requires_grad_(False)

    model = UVit2DModel.from_pretrained(
        args.pretrained_model_name_or_path,
        subfolder="transformer",
        revision=args.revision,
        variant=args.variant,
    )

    if args.use_lora:
        lora_config = LoraConfig(
            r=args.lora_r,
            lora_alpha=args.lora_alpha,
            target_modules=args.lora_target_modules,
        )
        model.add_adapter(lora_config)

    model.train()

    if args.gradient_checkpointing:
        model.enable_gradient_checkpointing()
        if args.train_text_encoder:
            text_encoder.gradient_checkpointing_enable()

    if args.use_ema:
        ema = EMAModel(
            model.parameters(),
            decay=args.ema_decay,
            update_after_step=args.ema_update_after_step,
            model_cls=UVit2DModel,
            model_config=model.config,
        )

    def save_model_hook(models, weights, output_dir):
        if accelerator.is_main_process:
            transformer_lora_layers_to_save = None
            text_encoder_lora_layers_to_save = None

            for model_ in models:
                if isinstance(model_, type(accelerator.unwrap_model(model))):
                    if args.use_lora:
                        transformer_lora_layers_to_save = get_peft_model_state_dict(model_)
                    else:
                        model_.save_pretrained(os.path.join(output_dir, "transformer"))
                elif isinstance(model_, type(accelerator.unwrap_model(text_encoder))):
                    if args.text_encoder_use_lora:
                        text_encoder_lora_layers_to_save = get_peft_model_state_dict(model_)
                    else:
                        model_.save_pretrained(os.path.join(output_dir, "text_encoder"))
                else:
                    raise ValueError(f"unexpected save model: {model_.__class__}")

                # make sure to pop weight so that corresponding model is not saved again
                weights.pop()

            if transformer_lora_layers_to_save is not None or text_encoder_lora_layers_to_save is not None:
                AmusedLoraLoaderMixin.save_lora_weights(
                    output_dir,
                    transformer_lora_layers=transformer_lora_layers_to_save,
                    text_encoder_lora_layers=text_encoder_lora_layers_to_save,
                )

            if args.use_ema:
                ema.save_pretrained(os.path.join(output_dir, "ema_model"))

    def load_model_hook(models, input_dir):
        transformer = None
        text_encoder_ = None

        while len(models) > 0:
            model_ = models.pop()

            if isinstance(model_, type(accelerator.unwrap_model(model))):
                if args.use_lora:
                    transformer = model_
                else:
                    load_model = UVit2DModel.from_pretrained(os.path.join(input_dir, "transformer"))
                    model_.load_state_dict(load_model.state_dict())
                    del load_model
            elif isinstance(model, type(accelerator.unwrap_model(text_encoder))):
                if args.text_encoder_use_lora:
                    text_encoder_ = model_
                else:
                    load_model = CLIPTextModelWithProjection.from_pretrained(os.path.join(input_dir, "text_encoder"))
                    model_.load_state_dict(load_model.state_dict())
                    del load_model
            else:
                raise ValueError(f"unexpected save model: {model.__class__}")

        if transformer is not None or text_encoder_ is not None:
            lora_state_dict, network_alphas = AmusedLoraLoaderMixin.lora_state_dict(input_dir)
            AmusedLoraLoaderMixin.load_lora_into_text_encoder(
                lora_state_dict, network_alphas=network_alphas, text_encoder=text_encoder_
            )
            AmusedLoraLoaderMixin.load_lora_into_transformer(
                lora_state_dict, network_alphas=network_alphas, transformer=transformer
            )

        if args.use_ema:
            load_from = EMAModel.from_pretrained(os.path.join(input_dir, "ema_model"), model_cls=UVit2DModel)
            ema.load_state_dict(load_from.state_dict())
            del load_from

    accelerator.register_load_state_pre_hook(load_model_hook)
    accelerator.register_save_state_pre_hook(save_model_hook)

    if args.scale_lr:
        args.learning_rate = (
            args.learning_rate * args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
        )

    if args.use_8bit_adam:
        try:
            import bitsandbytes as bnb
        except ImportError:
            raise ImportError(
                "Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`"
            )

        optimizer_cls = bnb.optim.AdamW8bit
    else:
        optimizer_cls = torch.optim.AdamW

    # no decay on bias and layernorm and embedding
    no_decay = ["bias", "layer_norm.weight", "mlm_ln.weight", "embeddings.weight"]
    optimizer_grouped_parameters = [
        {
            "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
            "weight_decay": args.adam_weight_decay,
        },
        {
            "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
            "weight_decay": 0.0,
        },
    ]

    if args.train_text_encoder:
        optimizer_grouped_parameters.append(
            {"params": text_encoder.parameters(), "weight_decay": args.adam_weight_decay}
        )

    optimizer = optimizer_cls(
        optimizer_grouped_parameters,
        lr=args.learning_rate,
        betas=(args.adam_beta1, args.adam_beta2),
        weight_decay=args.adam_weight_decay,
        eps=args.adam_epsilon,
    )

    logger.info("Creating dataloaders and lr_scheduler")

    total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    if args.instance_data_dir is not None:
        dataset = InstanceDataRootDataset(
            instance_data_root=args.instance_data_dir,
            tokenizer=tokenizer,
            size=args.resolution,
        )
    elif args.instance_data_image is not None:
        dataset = InstanceDataImageDataset(
            instance_data_image=args.instance_data_image,
            train_batch_size=args.train_batch_size,
            size=args.resolution,
        )
    elif args.instance_data_dataset is not None:
        dataset = HuggingFaceDataset(
            hf_dataset=load_dataset(args.instance_data_dataset, split="train"),
            tokenizer=tokenizer,
            image_key=args.image_key,
            prompt_key=args.prompt_key,
            prompt_prefix=args.prompt_prefix,
            size=args.resolution,
        )
    else:
        assert False

    train_dataloader = DataLoader(
        dataset,
        batch_size=args.train_batch_size,
        shuffle=True,
        num_workers=args.dataloader_num_workers,
        collate_fn=default_collate,
    )
    train_dataloader.num_batches = len(train_dataloader)

    lr_scheduler = diffusers.optimization.get_scheduler(
        args.lr_scheduler,
        optimizer=optimizer,
        num_training_steps=args.max_train_steps * accelerator.num_processes,
        num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
    )

    logger.info("Preparing model, optimizer and dataloaders")

    if args.train_text_encoder:
        model, optimizer, lr_scheduler, train_dataloader, text_encoder = accelerator.prepare(
            model, optimizer, lr_scheduler, train_dataloader, text_encoder
        )
    else:
        model, optimizer, lr_scheduler, train_dataloader = accelerator.prepare(
            model, optimizer, lr_scheduler, train_dataloader
        )

    train_dataloader.num_batches = len(train_dataloader)

    weight_dtype = torch.float32
    if accelerator.mixed_precision == "fp16":
        weight_dtype = torch.float16
    elif accelerator.mixed_precision == "bf16":
        weight_dtype = torch.bfloat16

    if not args.train_text_encoder:
        text_encoder.to(device=accelerator.device, dtype=weight_dtype)

    vq_model.to(device=accelerator.device)

    if args.use_ema:
        ema.to(accelerator.device)

    with nullcontext() if args.train_text_encoder else torch.no_grad():
        empty_embeds, empty_clip_embeds = encode_prompt(
            text_encoder, tokenize_prompt(tokenizer, "").to(text_encoder.device, non_blocking=True)
        )

        # There is a single image, we can just pre-encode the single prompt
        if args.instance_data_image is not None:
            prompt = os.path.splitext(os.path.basename(args.instance_data_image))[0]
            encoder_hidden_states, cond_embeds = encode_prompt(
                text_encoder, tokenize_prompt(tokenizer, prompt).to(text_encoder.device, non_blocking=True)
            )
            encoder_hidden_states = encoder_hidden_states.repeat(args.train_batch_size, 1, 1)
            cond_embeds = cond_embeds.repeat(args.train_batch_size, 1)

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(train_dataloader.num_batches / args.gradient_accumulation_steps)
    # Afterwards we recalculate our number of training epochs.
    # Note: We are not doing epoch based training here, but just using this for book keeping and being able to
    # reuse the same training loop with other datasets/loaders.
    num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    # Train!
    logger.info("***** Running training *****")
    logger.info(f"  Num training steps = {args.max_train_steps}")
    logger.info(f"  Instantaneous batch size per device = { args.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")

    resume_from_checkpoint = args.resume_from_checkpoint
    if resume_from_checkpoint:
        if resume_from_checkpoint == "latest":
            # Get the most recent checkpoint
            dirs = os.listdir(args.output_dir)
            dirs = [d for d in dirs if d.startswith("checkpoint")]
            dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
            if len(dirs) > 0:
                resume_from_checkpoint = os.path.join(args.output_dir, dirs[-1])
            else:
                resume_from_checkpoint = None

        if resume_from_checkpoint is None:
            accelerator.print(
                f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
            )
        else:
            accelerator.print(f"Resuming from checkpoint {resume_from_checkpoint}")

    if resume_from_checkpoint is None:
        global_step = 0
        first_epoch = 0
    else:
        accelerator.load_state(resume_from_checkpoint)
        global_step = int(os.path.basename(resume_from_checkpoint).split("-")[1])
        first_epoch = global_step // num_update_steps_per_epoch

    # As stated above, we are not doing epoch based training here, but just using this for book keeping and being able to
    # reuse the same training loop with other datasets/loaders.
    for epoch in range(first_epoch, num_train_epochs):
        for batch in train_dataloader:
            with torch.no_grad():
                micro_conds = batch["micro_conds"].to(accelerator.device, non_blocking=True)
                pixel_values = batch["image"].to(accelerator.device, non_blocking=True)

                batch_size = pixel_values.shape[0]

                split_batch_size = args.split_vae_encode if args.split_vae_encode is not None else batch_size
                num_splits = math.ceil(batch_size / split_batch_size)
                image_tokens = []
                for i in range(num_splits):
                    start_idx = i * split_batch_size
                    end_idx = min((i + 1) * split_batch_size, batch_size)
                    bs = pixel_values.shape[0]
                    image_tokens.append(
                        vq_model.quantize(vq_model.encode(pixel_values[start_idx:end_idx]).latents)[2][2].reshape(
                            bs, -1
                        )
                    )
                image_tokens = torch.cat(image_tokens, dim=0)

                batch_size, seq_len = image_tokens.shape

                timesteps = torch.rand(batch_size, device=image_tokens.device)
                mask_prob = torch.cos(timesteps * math.pi * 0.5)
                mask_prob = mask_prob.clip(args.min_masking_rate)

                num_token_masked = (seq_len * mask_prob).round().clamp(min=1)
                batch_randperm = torch.rand(batch_size, seq_len, device=image_tokens.device).argsort(dim=-1)
                mask = batch_randperm < num_token_masked.unsqueeze(-1)

                mask_id = accelerator.unwrap_model(model).config.vocab_size - 1
                input_ids = torch.where(mask, mask_id, image_tokens)
                labels = torch.where(mask, image_tokens, -100)

                if args.cond_dropout_prob > 0.0:
                    assert encoder_hidden_states is not None

                    batch_size = encoder_hidden_states.shape[0]

                    mask = (
                        torch.zeros((batch_size, 1, 1), device=encoder_hidden_states.device).float().uniform_(0, 1)
                        < args.cond_dropout_prob
                    )

                    empty_embeds_ = empty_embeds.expand(batch_size, -1, -1)
                    encoder_hidden_states = torch.where(
                        (encoder_hidden_states * mask).bool(), encoder_hidden_states, empty_embeds_
                    )

                    empty_clip_embeds_ = empty_clip_embeds.expand(batch_size, -1)
                    cond_embeds = torch.where((cond_embeds * mask.squeeze(-1)).bool(), cond_embeds, empty_clip_embeds_)

                bs = input_ids.shape[0]
                vae_scale_factor = 2 ** (len(vq_model.config.block_out_channels) - 1)
                resolution = args.resolution // vae_scale_factor
                input_ids = input_ids.reshape(bs, resolution, resolution)

            if "prompt_input_ids" in batch:
                with nullcontext() if args.train_text_encoder else torch.no_grad():
                    encoder_hidden_states, cond_embeds = encode_prompt(
                        text_encoder, batch["prompt_input_ids"].to(accelerator.device, non_blocking=True)
                    )

            # Train Step
            with accelerator.accumulate(model):
                codebook_size = accelerator.unwrap_model(model).config.codebook_size

                logits = (
                    model(
                        input_ids=input_ids,
                        encoder_hidden_states=encoder_hidden_states,
                        micro_conds=micro_conds,
                        pooled_text_emb=cond_embeds,
                    )
                    .reshape(bs, codebook_size, -1)
                    .permute(0, 2, 1)
                    .reshape(-1, codebook_size)
                )

                loss = F.cross_entropy(
                    logits,
                    labels.view(-1),
                    ignore_index=-100,
                    reduction="mean",
                )

                # Gather the losses across all processes for logging (if we use distributed training).
                avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean()
                avg_masking_rate = accelerator.gather(mask_prob.repeat(args.train_batch_size)).mean()

                accelerator.backward(loss)

                if args.max_grad_norm is not None and accelerator.sync_gradients:
                    accelerator.clip_grad_norm_(model.parameters(), args.max_grad_norm)

                optimizer.step()
                lr_scheduler.step()

                optimizer.zero_grad(set_to_none=True)

            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                if args.use_ema:
                    ema.step(model.parameters())

                if (global_step + 1) % args.logging_steps == 0:
                    logs = {
                        "step_loss": avg_loss.item(),
                        "lr": lr_scheduler.get_last_lr()[0],
                        "avg_masking_rate": avg_masking_rate.item(),
                    }
                    accelerator.log(logs, step=global_step + 1)

                    logger.info(
                        f"Step: {global_step + 1} "
                        f"Loss: {avg_loss.item():0.4f} "
                        f"LR: {lr_scheduler.get_last_lr()[0]:0.6f}"
                    )

                if (global_step + 1) % args.checkpointing_steps == 0:
                    save_checkpoint(args, accelerator, global_step + 1)

                if (global_step + 1) % args.validation_steps == 0 and accelerator.is_main_process:
                    if args.use_ema:
                        ema.store(model.parameters())
                        ema.copy_to(model.parameters())

                    with torch.no_grad():
                        logger.info("Generating images...")

                        model.eval()

                        if args.train_text_encoder:
                            text_encoder.eval()

                        scheduler = AmusedScheduler.from_pretrained(
                            args.pretrained_model_name_or_path,
                            subfolder="scheduler",
                            revision=args.revision,
                            variant=args.variant,
                        )

                        pipe = AmusedPipeline(
                            transformer=accelerator.unwrap_model(model),
                            tokenizer=tokenizer,
                            text_encoder=text_encoder,
                            vqvae=vq_model,
                            scheduler=scheduler,
                        )

                        pil_images = pipe(prompt=args.validation_prompts).images
                        wandb_images = [
                            wandb.Image(image, caption=args.validation_prompts[i])
                            for i, image in enumerate(pil_images)
                        ]

                        wandb.log({"generated_images": wandb_images}, step=global_step + 1)

                        model.train()

                        if args.train_text_encoder:
                            text_encoder.train()

                    if args.use_ema:
                        ema.restore(model.parameters())

                global_step += 1

            # Stop training if max steps is reached
            if global_step >= args.max_train_steps:
                break
        # End for

    accelerator.wait_for_everyone()

    # Evaluate and save checkpoint at the end of training
    save_checkpoint(args, accelerator, global_step)

    # Save the final trained checkpoint
    if accelerator.is_main_process:
        model = accelerator.unwrap_model(model)
        if args.use_ema:
            ema.copy_to(model.parameters())
        model.save_pretrained(args.output_dir)

    accelerator.end_training()


def save_checkpoint(args, accelerator, global_step):
    output_dir = args.output_dir

    # _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
    if accelerator.is_main_process and args.checkpoints_total_limit is not None:
        checkpoints = os.listdir(output_dir)
        checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
        checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))

        # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
        if len(checkpoints) >= args.checkpoints_total_limit:
            num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
            removing_checkpoints = checkpoints[0:num_to_remove]

            logger.info(
                f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
            )
            logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")

            for removing_checkpoint in removing_checkpoints:
                removing_checkpoint = os.path.join(output_dir, removing_checkpoint)
                shutil.rmtree(removing_checkpoint)

    save_path = Path(output_dir) / f"checkpoint-{global_step}"
    accelerator.save_state(save_path)
    logger.info(f"Saved state to {save_path}")


if __name__ == "__main__":
    main(parse_args())