File size: 28,271 Bytes
74a7054 af1b083 fdf24d3 74a7054 af1b083 6fdce9f 74a7054 51ec205 3b22343 51ec205 b8414c1 51ec205 f036f7b 077a231 0523dae b594a0a f036f7b 17e546e 74a7054 077a231 18e92a9 249253a 2223231 b722580 18e92a9 5d17686 a626d77 fd9f8a3 a626d77 077a231 a626d77 a3886f0 cbfa0b5 2080460 958b1ca cbfa0b5 d29d19e cbfa0b5 077a231 d29d19e cbfa0b5 ecf2eab 077a231 bdb2316 cbfa0b5 d29d19e cbfa0b5 8de1955 2080460 cbfa0b5 17e546e cbfa0b5 bdb2316 d29d19e cbfa0b5 8de1955 74a7054 2080460 74a7054 3b22343 74a7054 3b22343 74a7054 3b22343 74a7054 baaca29 0a3ec85 077a231 74a7054 3b22343 74a7054 84e7dc0 74a7054 3b22343 74a7054 077a231 3b22343 1aede27 babbb41 1aede27 4d96901 1aede27 4d96901 1aede27 ffabe3e 1aede27 ffabe3e 1aede27 077a231 249253a 077a231 17e546e bdb2316 0dc1232 bdb2316 0dc1232 bdb2316 0dc1232 bdb2316 0dc1232 bdb2316 0dc1232 bdb2316 077a231 bdb2316 0dc1232 bdb2316 077a231 74a7054 cbfa0b5 fd9f8a3 bdb2316 0dc1232 077a231 bdb2316 0dc1232 077a231 74a7054 fd9f8a3 60ab4d6 0dc1232 74a7054 b07126b 3b22343 74a7054 b07126b 3b22343 74a7054 3b22343 18e92a9 74a7054 1af3c5d 74a7054 18e92a9 1af3c5d 74a7054 17e546e 18e92a9 17e546e 18e92a9 17e546e 74a7054 17e546e 74a7054 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 |
---
license: cc-by-nc-4.0
language:
- en
---
# Jellyfish-13B
<!-- Provide a quick summary of what the model is/does. -->
<!--
<img src="https://i.imgur.com/d8Bl04i.png" alt="PicToModel" width="330"/>
-->
<img src="https://i.imgur.com/E1vqCIw.png" alt="PicToModel" width="330"/>
We also build [Jellyfish-7B](https://huggingface.co/NECOUDBFM/Jellyfish-7B) and [Jellyfish-8B](https://huggingface.co/NECOUDBFM/Jellyfish-8B), lighter versions of Jellyfish!\
They retain excellent data propcessing performance while delivering faster inference speed and better reasoning ability!
😄 We strongly **recommend users to use the 7B and 8B models** for their generalizability to unseen tasks and reasoning ability!
## Model Details
Jellyfish-13B is a large language model with 13 billion parameters. It is tailored specifically for data preprocessing tasks, including error detection, data imputation, schema matching, and entity matching.
We fine-tuned the [Open-Orca/OpenOrca-Platypus2-13B](https://huggingface.co/Open-Orca/OpenOrca-Platypus2-13B) model using the datasets pertinent to data preprocessing tasks.
Its performance is competitive, rivaling previous state-of-the-art algorithms and LLMs such as OpenAI's GPT 3.5 and GPT 4 ([as demonstrated in our earlier studies](https://arxiv.org/abs/2308.16361)).
It is notable that, as a 13B model, Jellyfish allows for cost-effective local execution without compromising data security.
Additionally, its proficiency in handling data preprocessing tasks means that Jellyfish maintains strong performance in NLP tasks as an LLM, as evidenced by the NLP benchmark scores comparison between [Jellyfish](https://llm.extractum.io/model/NECOUDBFM%2FJellyfish,G7X4BD9tZSOCFxjGcY3kY) and [OpenOraca-Platypus2](https://llm.extractum.io/model/Open-Orca%2FOpenOrca-Platypus2-13B,5FA1mWWk7x7RRbnn3bat5s).
We release two distinct versions of Jellyfish: Jellyfish-13B (the main branch) and Jellyfish-13B-Interpreter (the alternative branch).
As the names suggest, Jellyfish-13B is tailored to deliver precise, straightforward answers.
In contrast, Jellyfish-13B-Interpreter, is fine-tuned with data that includes reasoning and sequential thought processes for handling data preprocessing tasks, distilling knowledge from GPT-4.
The two versions are designed for different application scenarios.
Jellyfish-13B is suitable for integration into larger data management systems due to its simple and clear responses that can be easily transformed into codes in a data management/analysis pipeline.
On the other hand, Jellyfish-13B-Interpreter is more user-oriented, with responses that provide in-depth data insights without the necessity for advanced coding skills or an intricate grasp of statistics.
More details about the model can be found in the [Jellyfish paper](https://arxiv.org/abs/2312.01678).
- **Developed by:** Haochen Zhang, Yuyang Dong, Chuan Xiao, Masafumi Oyamada
- **Contact: [email protected]**
- **Funded by:** NEC Corporation, Osaka University
- **Language(s) (NLP):** English
- **License:** Non-Commercial Creative Commons license (CC BY-NC-4.0)
- **Finetuned from model:** [Open-Orca/OpenOrca-Platypus2-13B](https://huggingface.co/Open-Orca/OpenOrca-Platypus2-13B)
## Citation
If you find our work useful, please give us credit by citing:
```
@article{zhang2023jellyfish,
title={Jellyfish: A Large Language Model for Data Preprocessing},
author={Zhang, Haochen and Dong, Yuyang and Xiao, Chuan and Oyamada, Masafumi},
journal={arXiv preprint arXiv:2312.01678},
year={2023}
}
```
## Performance on seen tasks
| Task | Type | Dataset | Non-LLM SoTA<sup>1</sup> | GPT-3.5<sup>2</sup> | GPT-4<sup>2</sup> | GPT-4o | Table-GPT | Jellyfish-7B | Jellyfish-8B | Jellyfish-13B |
|-----------------|--------|-------------------|-----------------|--------|--------|--------|-----------|--------------|--------------|---------------|
| Error Detection | Seen | Adult | *99.10* | 99.10 | 92.01 | 83.58 | -- | 77.40 | 73.74 | **99.33** |
| Error Detection | Seen | Hospital | 94.40 | **97.80** | 90.74 | 44.76 | -- | 94.51 | 93.40 | *95.59* |
| Error Detection | Unseen | Flights | 81.00 | -- | **83.48** | 66.01 | -- | 69.15 | 66.21 | *82.52* |
| Error Detection | Unseen | Rayyan | 79.00 | -- | *81.95* | 68.53 | -- | 75.07 | 81.06 | **90.65** |
| Data Imputation | Seen | Buy | 96.50 | 98.50 | **100** | **100** | -- | 98.46 | 98.46 | **100** |
| Data Imputation | Seen | Restaurant | 77.20 | 88.40 | **97.67** | 90.70 | -- | 89.53 | 87.21 | 89.53 |
| Data Imputation | Unseen | Flipkart | 68.00 | -- | **89.94** | 83.20 | -- | 87.14 | *87.48* | 81.68 |
| Data Imputation | Unseen | Phone | 86.70 | -- | **90.79** | 86.78 | -- | 86.52 | 85.68 | *87.21* |
| Schema Matching | Seen | MIMIC-III | 20.00 | -- | 40.00 | 29.41 | -- | **53.33** | *45.45* | 40.00 |
| Schema Matching | Seen | Synthea | 38.50 | 45.20 | **66.67** | 6.56 | -- | 55.56 | 47.06 | 56.00 |
| Schema Matching | Unseen | CMS | *50.00* | -- | 19.35 | 22.22 | -- | 42.86 | 38.10 | **59.29** |
| Entity Matching | Seen | Amazon-Google | 75.58 | 63.50 | 74.21 | 70.91 | 70.10 | **81.69** | *81.42* | 81.34 |
| Entity Matching | Seen | Beer | 94.37 | **100** | **100** | 90.32 | 96.30 | **100.00** | **100.00** | 96.77 |
| Entity Matching | Seen | DBLP-ACM | **98.99** | 96.60 | 97.44 | 95.87 | 93.80 | 98.65 | 98.77 | *98.98* |
| Entity Matching | Seen | DBLP-GoogleScholar| *95.70* | 83.80 | 91.87 | 90.45 | 92.40 | 94.88 | 95.03 | **98.51** |
| Entity Matching | Seen | Fodors-Zagats | **100** | **100** | **100** | 93.62 | **100** | **100** | **100** | **100** |
| Entity Matching | Seen | iTunes-Amazon | 97.06 | *98.20*| **100** | 98.18 | 94.30 | 96.30 | 96.30 | 98.11 |
| Entity Matching | Unseen | Abt-Buy | 89.33 | -- | **92.77** | 78.73 | -- | 86.06 | 88.84 | *89.58* |
| Entity Matching | Unseen | Walmart-Amazon | 86.89 | 87.00 | **90.27** | 79.19 | 82.40 | 84.91 | 85.24 | *89.42* |
| Avg | | | 80.44 | - | *84.17* | 72.58 | - | 82.74 | 81.55 | **86.02** |
_For GPT-3.5 and GPT-4, we used the few-shot approach on all datasets. For Jellyfish models, the few-shot approach is disabled on seen datasets and enabled on unseen datasets._
_Accuracy as the metric for data imputation and the F1 score for other tasks._
1.
[HoloDetect](https://arxiv.org/abs/1904.02285) for Error Detection seen datasets
[RAHA](https://dl.acm.org/doi/10.1145/3299869.3324956) for Error Detection unseen datasets
[IPM](https://ieeexplore.ieee.org/document/9458712) for Data Imputation
[SMAT](https://www.researchgate.net/publication/353920530_SMAT_An_Attention-Based_Deep_Learning_Solution_to_the_Automation_of_Schema_Matching) for Schema Matching
[Ditto](https://arxiv.org/abs/2004.00584) for Entity Matching
2.
[Large Language Models as Data Preprocessors](https://arxiv.org/abs/2308.16361)
## Performance on unseen tasks
### Column Type Annotation
| Dataset | RoBERTa (159 shots)<sup>1</sup> | GPT-3.5<sup>1</sup> | GPT-4 | GPT-4o | Jellyfish-7B | Jellyfish-8B | Jellyfish-13B |
|--------|-----------------|--------|--------|--------|--------------|--------------|---------------|
| SOTAB | 79.20 | 89.47 | 91.55 | 65.05 | 83 | 76.33 | 82 |
_Few-shot is disabled for Jellyfish models._
1. Results from [Column Type Annotation using ChatGPT](https://arxiv.org/abs/2306.00745)
### Attribute Value Extraction
| Dataset |Stable Beluga 2 70B<sup>1</sup> | SOLAR 70B<sup>1</sup> | GPT-3.5<sup>1</sup> | GPT-4 <sup>1</sup>| GPT-4o | Jellyfish-7B | Jellyfish-8B | Jellyfish-13B |
| ---- | ---- | ---- | ---- | ---- | ---- | ----| ----| ----|
| AE-110k | 52.10 | 49.20 | 61.30 | 55.50 | 55.77 | 56.09 |59.55 | 58.12 |
| OA-Mine | 50.80 | 55.20 | 62.70 | 68.90 | 60.20 | 51.98 | 59.22 | 55.96 |
_Few-shot is disabled for Jellyfish models._
1. Results from [Product Attribute Value Extraction using Large Language Models](https://arxiv.org/abs/2310.12537)
## Prompt Template
```
### Instruction:
<prompt> (without the <>)
### Response:
```
## Training Details
### Training Data
We utilized the training and validation sets from the paper [Can Foundation Models Wrangle Your Data?](https://arxiv.org/abs/2205.09911) to fine-tune Jellyfish.
The original datasets are from [HazyResearch/fm_data_tasks](https://github.com/HazyResearch/fm_data_tasks), [RAHA](https://github.com/BigDaMa/raha), [SMAT](https://github.com/JZCS2018/SMAT), and [IPM](https://ieeexplore.ieee.org/document/9458712).
Based on these datasets, we constructed an instruction tuning dataset for fine-tuning LLMs, mirroring the style of [OpenOrca dataset](https://huggingface.co/datasets/Open-Orca/OpenOrca).
### Training Method
We used LoRA to speed up the training process, targeting the q_proj, k_proj, v_proj, and o_proj modules.
## Uses
To accelerate the inference, we strongly recommend running Jellyfish using [vLLM](https://github.com/vllm-project/vllm).
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Python Script
We provide two simple Python code examples for inference using the Jellyfish model.
#### Using Transformers and Torch Modules
<div style="height: auto; max-height: 400px; overflow-y: scroll;">
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
import torch
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
# Model will be automatically downloaded from HuggingFace model hub if not cached.
# Model files will be cached in "~/.cache/huggingface/hub/models--NECOUDBFM--Jellyfish/" by default.
# You can also download the model manually and replace the model name with the path to the model files.
model = AutoModelForCausalLM.from_pretrained(
"NECOUDBFM/Jellyfish",
torch_dtype=torch.float16,
device_map="auto",
)
tokenizer = AutoTokenizer.from_pretrained("NECOUDBFM/Jellyfish")
system_message = "You are an AI assistant that follows instruction extremely well. Help as much as you can."
# You need to define the user_message variable based on the task and the data you want to test on.
user_message = "Hello, world."
prompt = f"{system_message}\n\n### Instruction:\n\n{user_message}\n\n### Response:\n\n"
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
# You can modify the sampling parameters according to your needs.
generation_config = GenerationConfig(
do_samples=True,
temperature=0.35,
top_p=0.9,
)
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=1024,
pad_token_id=tokenizer.eos_token_id,
repetition_penalty=1.15,
)
output = generation_output[0]
response = tokenizer.decode(
output[:, input_ids.shape[-1] :][0], skip_special_tokens=True
).strip()
print(response)
```
</div>
#### Using vLLM
<div style="height: auto; max-height: 400px; overflow-y: scroll;">
```python
from vllm import LLM, SamplingParams
# To use vllm for inference, you need to download the model files either using HuggingFace model hub or manually.
# You should modify the path to the model according to your local environment.
path_to_model = (
"/workspace/models/Jellyfish"
)
model = LLM(model=path_to_model)
# You can modify the sampling parameters according to your needs.
# Caution: The stop parameter should not be changed.
sampling_params = SamplingParams(
temperature=0.35,
top_p=0.9,
max_tokens=1024,
stop=["### Instruction:"],
)
system_message = "You are an AI assistant that follows instruction extremely well. Help as much as you can."
# You need to define the user_message variable based on the task and the data you want to test on.
user_message = "Hello, world."
prompt = f"{system_message}\n\n### Instruction:\n\n{user_message}\n\n### Response:\n\n"
outputs = model.generate(prompt, sampling_params)
response = outputs[0].outputs[0].text.strip()
print(response)
```
</div>
### Prompts
We provide the prompts used for both fine-tuning and inference.
You can structure your data according to these prompts.
Moreover, we encourage experimenting with different prompts to potentially achieve optimal generation quality.
### JellyFish-13B
#### For Error Detection
_There are two forms of the error detection task.
In the first form, a complete record row is provided, and the task is to determine if a specific value is erroneous.
In the second form, only the value of a specific attribute is given, and the decision about its correctness is based solely on the attribute's name and value.
The subsequent prompt examples pertain to these two forms, respectively._
```
Your task is to determine if there is an error in the value of a specific attribute within the whole record provided.
The attributes may include {attribute 1}, {attribute 2}, ...
Errors may include, but are not limited to, spelling errors, inconsistencies, or values that don't make sense given the context of the whole record.
Record [{attribute 1}: {attribute 1 value}, {attribute 2}: {attribute 2 value}, ...]
Attribute for Verification: [{attribute X}: {attribute X value}]
Question: Is there an error in the value of {attribute X}? Choose your answer from: [Yes, No].
```
```
Your task is to determine if there is an error in the value of a specific attribute.
The attributes may belong to a {keyword} record and could be one of the following: {attribute 1}, {attribute 2}, ...
Errors can include, but are not limited to, spelling errors, inconsistencies, or values that don't make sense for that attribute.
Note: Missing values (N/A or \"nan\") are not considered errors.
Attribute for Verification: [{attribute X}: {attribute X value}]
Question: Is there an error in the value of {attribute X}? Choose your answer from: [Yes, No].
```
#### For Data Imputation
```
You are presented with a {keyword} record that is missing a specific attribute: {attribute X}.
Your task is to deduce or infer the value of {attribute X} using the available information in the record.
You may be provided with fields like {attribute 1}, {attribute 2}, ... to help you in the inference.
Record: [{attribute 1}: {attribute 1 value}, {attribute 2}: {attribute 2 value}, ...]
Based on the provided record, what would you infer is the value for the missing attribute {attribute X}?
Answer only the value of {attribute X}.
```
#### For Schema Matching
```
Your task is to determine if the two attributes (columns) are semantically equivalent in the context of merging two tables.
Each attribute will be provided by its name and a brief description.
Your goal is to assess if they refer to the same information based on these names and descriptions provided.
Attribute A is [name: {value of name}, description: {value of description}].
Attribute B is [name: {value of name}, description: {value of description}].
Are Attribute A and Attribute B semantically equivalent? Choose your answer from: [Yes, No].
```
#### For Entity Matching
```
You are tasked with determining whether two records listed below are the same based on the information provided.
Carefully compare the {attribute 1}, {attribute 2}... for each record before making your decision.
Note: Missing values (N/A or \"nan\") should not be used as a basis for your decision.
Record A: [{attribute 1}: {attribute 1 value}, {attribute 2}: {attribute 2 value}, ...]
Record B: [{attribute 1}: {attribute 1 value}, {attribute 2}: {attribute 2 value}, ...]
Are record A and record B the same entity? Choose your answer from: [Yes, No].
```
### For Column Type Annotation
We follow the prompt in [Column Type Annotation using ChatGPT](https://arxiv.org/abs/2306.00745) (text+inst+2-step).
### For Attribute Value Extraction
We follow the prompt in [Product Attribute Value Extraction using Large Language Models](https://arxiv.org/abs/2310.12537) (textual, w/o examples).
### JellyFish-13B-Interpreter
#### For Error Detection
```
Your task is to determine if there is an error in the value of a specific attribute within the whole record provided.
Errors may include, but are not limited to, spelling errors, inconsistencies, or values that don't make sense given the context of the whole record.
Record [{attribute 1}: {attribute 1 value}, {attribute 2}: {attribute 2 value}, ...]
Attribute for verification: [{attribute X}: {attribute X value}]
Question: Is there an error in the value of {attribute X}?
After your reasoning, finish your response in a separate line with and ONLY with your final answer. Choose your final answer from [Yes, No].
```
```
Your task is to determine if there is an error in the value of a specific attribute.
The attributes may belong to a {keyword} record.
Errors can include, but are not limited to, spelling errors, inconsistencies, or values that don't make sense for that attribute.
Note: Missing values (N/A or \"nan\") are not considered errors.
Attribute for Verification: [{attribute X}: {attribute X value}]
Question: Is there an error in the value of {attribute X}?
After your reasoning, finish your response in a separate line with and ONLY with your final answer. Choose your final answer from [Yes, No].",
```
#### For Data Imputation
```
You are presented with a {keyword} record that is missing a specific attribute {attribute X}.
Your task is to deduce or infer the manufacturer of the product using the available information in the record.
You may be provided with fields like {attribute 1}, {attribute 2}, ... to help you in the inference.
Record: [{attribute 1}: {attribute 1 value}, {attribute 2}: {attribute 2 value}, ...]
Based on the provided product record, what would you infer is the value for the missing attribute {attribute X}?
After your reasoning, finish your response in a separate line with and ONLY with your final answer.
Your final answer should only consist of the value of {attribute X}.
```
#### For Schema Matching
```
Your task is to determine if the two attributes (columns) are semantically equivalent in the context of merging two tables.
Each attribute will be provided by its name and a brief description.
Your goal is to assess if they refer to the same information based on these names and descriptions provided.
Attribute A is [name: {value of name}, description: {value of description}].
Attribute B is [name: {value of name}, description: {value of description}].
After your reasoning, finish your response in a separate line with and ONLY with your final answer. Choose your final answer from [Yes, No].
```
#### For Entity Matching
```
You are tasked with determining whether two products listed below are the same based on the information provided.
Carefully examine all the attributes before making your decision.
Note: Missing values (N/A or \"nan\") should not be used as a basis for your decision.
Record A: [{attribute 1}: {attribute 1 value}, {attribute 2}: {attribute 2 value}, ...]
Record B: [{attribute 1}: {attribute 1 value}, {attribute 2}: {attribute 2 value}, ...]
Are record A and record B the same entity?
After your reasoning, finish your response in a separate line with and ONLY with your final answer. Choose your final answer from [Yes, No].
```
## Sample Responses from Jellyfish-13B-Interpreter
We provide a few sample responses from Jellyfish-13B-Interpreter to demonstrate its performance.
_For easier readability, we display the raw data record instead of the entire prompt._
1. ```
Product A: [name: \"adobe creative suite cs3 web standard [ mac ]\", manufacturer: \"adobe\", price: \"999.0\"]
Product B: [name: \"adobe creative suite 3 ( cs3 ) web standard 3 windows upsell from dreamweaver or flash\", price: \"799.0\"]
Product A and Product B are not the same. Although both products are Adobe Creative Suite CS3 Web Standard, they are for different operating systems.
Product A is for Mac and Product B is for Windows. This difference in operating systems indicates that the products are not the same, as they are designed for different hardware and software environments.
Additionally, Product B mentions that it is an upsell from Dreamweaver or Flash, which further differentiates it from Product A.
No
```
2. ```
Article A: [title: \"l/mrp : a buffer management strategy for interactive continuous data flows in a multimedia dbms\", authors: \"f moser , a kraiss , w klas\", venue: \"vldb\", year: \"1995\"]
Article B: [title: \"l/mrp : a buffer management strategy for interactive continuous data flows in a multimedia dbms\", authors: \"f moser , w klas\", venue: \"proceedings of the international conference on very large & hellip ; ,\", year: \"1995.0\"]
The titles of both Article A and Article B are identical, which is a strong indicator that they are the same article.
The authors of both articles are also the same, with the exception that Article B does not include the author \"a kraiss\". However, this could be due to a mistake in data entry or a missing author in Article B.
The venue for both articles is also similar, with Article A listed as \"vldb\" and Article B listed as \"proceedings of the international conference on very large & hellip ; ,\" which is likely the same conference.
The year of publication is also the same for both articles, with Article A listed as \"1995\" and Article B listed as \"1995.0\".
Given these similarities, it is reasonable to conclude that Article A and Article B are the same.
Yes
```
3. ```
Record: [name: "le montrachet bistro", addr: "3000 paradise rd.", phone: "702-732-5651", type: "french bistro"].
missing attribute: "City"
The restaurant record provides the name, address, phone number, and type of restaurant. The name and type do not provide any specific information about the city. However, the address and phone number can be used to infer the city.
The address, "3000 paradise rd.", could potentially be in many different cities. However, the phone number, "702-732-5651", provides a clue. The area code, 702, is used in the state of Nevada, specifically in the Las Vegas metropolitan area.
Therefore, based on the area code of the phone number, it can be inferred that the restaurant is located in Las Vegas.
Las Vegas
```
<!--
## Bias, Risks, and Limitations
This section is meant to convey both technical and sociotechnical limitations.
As of now, we've tested Jellyfish exclusively with the test sets from the benchmark datasets mentioned earlier.
We're in the process of assessing its performance on additional datasets.
-->
<!--## Citation
If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section.
```bibtex
@article{
title = {Can Foundation Models Wrangle Your Data?},
author = {Avanika Narayan, Ines Chami, Laurel Orr, Simran Arora, Christopher Ré},
booktitle = {arXiv:2205.09911},
year = {2022}
}
@software{hunterlee2023orcaplaty1
title = {OpenOrcaPlatypus: Llama2-13B Model Instruct-tuned on Filtered OpenOrcaV1 GPT-4 Dataset and Merged with divergent STEM and Logic Dataset Model},
author = {Ariel N. Lee and Cole J. Hunter and Nataniel Ruiz and Bleys Goodson and Wing Lian and Guan Wang and Eugene Pentland and Austin Cook and Chanvichet Vong and "Teknium"},
year = {2023},
publisher = {HuggingFace},
journal = {HuggingFace repository},
howpublished = {\url{https://huggingface.co/Open-Orca/OpenOrca-Platypus2-13B},
}
@article{platypus2023,
title={Platypus: Quick, Cheap, and Powerful Refinement of LLMs},
author={Ariel N. Lee and Cole J. Hunter and Nataniel Ruiz},
booktitle={arXiv preprint arxiv:2308.07317},
year={2023}
}
@software{OpenOrcaxOpenChatPreview2,
title = {OpenOrcaxOpenChatPreview2: Llama2-13B Model Instruct-tuned on Filtered OpenOrcaV1 GPT-4 Dataset},
author = {Guan Wang and Bleys Goodson and Wing Lian and Eugene Pentland and Austin Cook and Chanvichet Vong and "Teknium"},
year = {2023},
publisher = {HuggingFace},
journal = {HuggingFace repository},
howpublished = {\url{https://https://huggingface.co/Open-Orca/OpenOrcaxOpenChat-Preview2-13B},
}
@software{openchat,
title = {{OpenChat: Advancing Open-source Language Models with Imperfect Data}},
author = {Wang, Guan and Cheng, Sijie and Yu, Qiying and Liu, Changling},
doi = {10.5281/zenodo.8105775},
url = {https://github.com/imoneoi/openchat},
version = {pre-release},
year = {2023},
month = {7},
}
@misc{mukherjee2023orca,
title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4},
author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah},
year={2023},
eprint={2306.02707},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@misc{touvron2023llama,
title={Llama 2: Open Foundation and Fine-Tuned Chat Models},
author={Hugo Touvron and Louis Martin and Kevin Stone and Peter Albert and Amjad Almahairi and Yasmine Babaei and Nikolay Bashlykov and Soumya Batra and Prajjwal Bhargava and Shruti Bhosale and Dan Bikel and Lukas Blecher and Cristian Canton Ferrer and Moya Chen and Guillem Cucurull and David Esiobu and Jude Fernandes and Jeremy Fu and Wenyin Fu and Brian Fuller and Cynthia Gao and Vedanuj Goswami and Naman Goyal and Anthony Hartshorn and Saghar Hosseini and Rui Hou and Hakan Inan and Marcin Kardas and Viktor Kerkez and Madian Khabsa and Isabel Kloumann and Artem Korenev and Punit Singh Koura and Marie-Anne Lachaux and Thibaut Lavril and Jenya Lee and Diana Liskovich and Yinghai Lu and Yuning Mao and Xavier Martinet and Todor Mihaylov and Pushkar Mishra and Igor Molybog and Yixin Nie and Andrew Poulton and Jeremy Reizenstein and Rashi Rungta and Kalyan Saladi and Alan Schelten and Ruan Silva and Eric Michael Smith and Ranjan Subramanian and Xiaoqing Ellen Tan and Binh Tang and Ross Taylor and Adina Williams and Jian Xiang Kuan and Puxin Xu and Zheng Yan and Iliyan Zarov and Yuchen Zhang and Angela Fan and Melanie Kambadur and Sharan Narang and Aurelien Rodriguez and Robert Stojnic and Sergey Edunov and Thomas Scialom},
year={2023},
eprint= arXiv 2307.09288
}
@misc{longpre2023flan,
title={The Flan Collection: Designing Data and Methods for Effective Instruction Tuning},
author={Shayne Longpre and Le Hou and Tu Vu and Albert Webson and Hyung Won Chung and Yi Tay and Denny Zhou and Quoc V. Le and Barret Zoph and Jason Wei and Adam Roberts},
year={2023},
eprint={2301.13688},
archivePrefix={arXiv},
primaryClass={cs.AI}
}
@article{hu2021lora,
title={LoRA: Low-Rank Adaptation of Large Language Models},
author={Hu, Edward J. and Shen, Yelong and Wallis, Phillip and Allen-Zhu, Zeyuan and Li, Yuanzhi and Wang, Shean and Chen, Weizhu},
journal={CoRR},
year={2021}
}
-->
<!--**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]-->
|