Upload 30 files
Browse files- README.md +16 -0
- added_tokens.json +3 -0
- config.json +24 -0
- generation_config.json +7 -0
- pytorch_model-00001-of-00017.bin +3 -0
- pytorch_model-00002-of-00017.bin +3 -0
- pytorch_model-00003-of-00017.bin +3 -0
- pytorch_model-00004-of-00017.bin +3 -0
- pytorch_model-00005-of-00017.bin +3 -0
- pytorch_model-00006-of-00017.bin +3 -0
- pytorch_model-00007-of-00017.bin +3 -0
- pytorch_model-00008-of-00017.bin +3 -0
- pytorch_model-00009-of-00017.bin +3 -0
- pytorch_model-00010-of-00017.bin +3 -0
- pytorch_model-00011-of-00017.bin +3 -0
- pytorch_model-00012-of-00017.bin +3 -0
- pytorch_model-00013-of-00017.bin +3 -0
- pytorch_model-00014-of-00017.bin +3 -0
- pytorch_model-00015-of-00017.bin +3 -0
- pytorch_model-00016-of-00017.bin +3 -0
- pytorch_model-00017-of-00017.bin +3 -0
- pytorch_model.bin.index.json +610 -0
- special_tokens_map.json +6 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +34 -0
- trainer_state.json +3874 -0
- training_args.bin +3 -0
- zero_to_fp32.py +584 -0
README.md
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
datasets:
|
4 |
+
- ehartford/WizardLM_alpaca_evol_instruct_70k_unfiltered
|
5 |
+
tags:
|
6 |
+
- uncensored
|
7 |
+
---
|
8 |
+
This is WizardLM trained with a subset of the dataset - responses that contained alignment / moralizing were removed. The intent is to train a WizardLM that doesn't have alignment built-in, so that alignment (of any sort) can be added separately with for example with a RLHF LoRA.
|
9 |
+
|
10 |
+
Shout out to the open source AI/ML community, and everyone who helped me out.
|
11 |
+
|
12 |
+
Note:
|
13 |
+
An uncensored model has no guardrails.
|
14 |
+
You are responsible for anything you do with the model, just as you are responsible for anything you do with any dangerous object such as a knife, gun, lighter, or car.
|
15 |
+
Publishing anything this model generates is the same as publishing it yourself.
|
16 |
+
You are responsible for the content you publish, and you cannot blame the model any more than you can blame the knife, gun, lighter, or car for what you do with it.
|
added_tokens.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"[PAD]": 32000
|
3 |
+
}
|
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "WizardLM-30B-Uncensored-Guanaco-30b",
|
3 |
+
"architectures": [
|
4 |
+
"LlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"bos_token_id": 1,
|
7 |
+
"eos_token_id": 2,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 6656,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 17920,
|
12 |
+
"max_position_embeddings": 2048,
|
13 |
+
"max_sequence_length": 2048,
|
14 |
+
"model_type": "llama",
|
15 |
+
"num_attention_heads": 52,
|
16 |
+
"num_hidden_layers": 60,
|
17 |
+
"pad_token_id": 0,
|
18 |
+
"rms_norm_eps": 1e-06,
|
19 |
+
"tie_word_embeddings": false,
|
20 |
+
"torch_dtype": "float16",
|
21 |
+
"transformers_version": "4.28.0",
|
22 |
+
"use_cache": true,
|
23 |
+
"vocab_size": 32001
|
24 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"pad_token_id": 0,
|
6 |
+
"transformers_version": "4.28.0"
|
7 |
+
}
|
pytorch_model-00001-of-00017.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca88b9d78ca717c192bcab4d100cc9b9f961338c5ea9c067a7c72695f37299b2
|
3 |
+
size 3990724311
|
pytorch_model-00002-of-00017.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bea0212ffdd3a9fd7e516d9df79bd2b9e463caf8a07c95c1409d568f45c091d0
|
3 |
+
size 3925987461
|
pytorch_model-00003-of-00017.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:50723a99441d30f5a7add67e2107aed7e9487172c2322c1e8a4a26c30da1833a
|
3 |
+
size 3803278039
|
pytorch_model-00004-of-00017.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2bca8c1fab773f80f0ffaf3fe21d7e1353bec73bb25f1a0d80c91b5750e357ea
|
3 |
+
size 3953251177
|
pytorch_model-00005-of-00017.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f44fca1287430f6a19939cc16fc63f492d96f371aa28c82becb8ac86e9a0b482
|
3 |
+
size 3776014451
|
pytorch_model-00006-of-00017.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:35f9db4041fe78a8d452552d8c75a0a6f6e6bf3dafdac5e9db0d1133736fecf6
|
3 |
+
size 3803305403
|
pytorch_model-00007-of-00017.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:49ad6efa305769771a5ab7c3755abf15b1454d61cb9ef1f8e59ab7042655b1c3
|
3 |
+
size 3925987525
|
pytorch_model-00008-of-00017.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a77513cf98ccd7d31e2ac34882548e7a77746f0deb4daab42231068be3ace85
|
3 |
+
size 3803278103
|
pytorch_model-00009-of-00017.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8e3bc65a68fefcf4622f8d8d1e7980953363e4bad332a0df86b751490ec22d57
|
3 |
+
size 3953251177
|
pytorch_model-00010-of-00017.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4fb493e747b497c1318b3bb648ce6517f415e17a74f3d3260409d3a5d8e4676f
|
3 |
+
size 3776014451
|
pytorch_model-00011-of-00017.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:22daf9debdbca7bd22f12f2f284abaecdd466f65332e1fcc1520ab292645fc3b
|
3 |
+
size 3803305403
|
pytorch_model-00012-of-00017.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:864b5a61872c9eba89db73a940ab88e96a9c091b7e52f328ace05e1eb89ff788
|
3 |
+
size 3925987525
|
pytorch_model-00013-of-00017.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:42a451ec24c10ae1e821b5c43c09de19ef4b488266d96d8b0a0296104518aa80
|
3 |
+
size 3803278103
|
pytorch_model-00014-of-00017.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fd19b54d5b93b8b0110db9c05743dccb8a9c035d36294b15ff82fabc1c658499
|
3 |
+
size 3953251177
|
pytorch_model-00015-of-00017.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e0ea53b9a7316ed4e4230da9fc97cc6979deeb2175246d5311ce8f4796772b1c
|
3 |
+
size 3776014451
|
pytorch_model-00016-of-00017.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9bb6a10487797b8f016676a3b917e3262d7e92ef435f2a380f5d32f126ae4185
|
3 |
+
size 3803305403
|
pytorch_model-00017-of-00017.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7bf7f3d8c2280c32f8704d71853a5018b8253f7d32ec3e4c309b1adcb5c8f350
|
3 |
+
size 3281896757
|
pytorch_model.bin.index.json
ADDED
@@ -0,0 +1,610 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 65057929216
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "pytorch_model-00017-of-00017.bin",
|
7 |
+
"model.embed_tokens.weight": "pytorch_model-00001-of-00017.bin",
|
8 |
+
"model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00017.bin",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00017.bin",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00017.bin",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00017.bin",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00017.bin",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00017.bin",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00017.bin",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00017.bin",
|
16 |
+
"model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00017.bin",
|
17 |
+
"model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00017.bin",
|
18 |
+
"model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00017.bin",
|
19 |
+
"model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00017.bin",
|
20 |
+
"model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00017.bin",
|
21 |
+
"model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00017.bin",
|
22 |
+
"model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00017.bin",
|
23 |
+
"model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00017.bin",
|
24 |
+
"model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00017.bin",
|
25 |
+
"model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00017.bin",
|
26 |
+
"model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00017.bin",
|
27 |
+
"model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00017.bin",
|
28 |
+
"model.layers.10.input_layernorm.weight": "pytorch_model-00004-of-00017.bin",
|
29 |
+
"model.layers.10.mlp.down_proj.weight": "pytorch_model-00004-of-00017.bin",
|
30 |
+
"model.layers.10.mlp.gate_proj.weight": "pytorch_model-00003-of-00017.bin",
|
31 |
+
"model.layers.10.mlp.up_proj.weight": "pytorch_model-00004-of-00017.bin",
|
32 |
+
"model.layers.10.post_attention_layernorm.weight": "pytorch_model-00004-of-00017.bin",
|
33 |
+
"model.layers.10.self_attn.k_proj.weight": "pytorch_model-00003-of-00017.bin",
|
34 |
+
"model.layers.10.self_attn.o_proj.weight": "pytorch_model-00003-of-00017.bin",
|
35 |
+
"model.layers.10.self_attn.q_proj.weight": "pytorch_model-00003-of-00017.bin",
|
36 |
+
"model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00017.bin",
|
37 |
+
"model.layers.10.self_attn.v_proj.weight": "pytorch_model-00003-of-00017.bin",
|
38 |
+
"model.layers.11.input_layernorm.weight": "pytorch_model-00004-of-00017.bin",
|
39 |
+
"model.layers.11.mlp.down_proj.weight": "pytorch_model-00004-of-00017.bin",
|
40 |
+
"model.layers.11.mlp.gate_proj.weight": "pytorch_model-00004-of-00017.bin",
|
41 |
+
"model.layers.11.mlp.up_proj.weight": "pytorch_model-00004-of-00017.bin",
|
42 |
+
"model.layers.11.post_attention_layernorm.weight": "pytorch_model-00004-of-00017.bin",
|
43 |
+
"model.layers.11.self_attn.k_proj.weight": "pytorch_model-00004-of-00017.bin",
|
44 |
+
"model.layers.11.self_attn.o_proj.weight": "pytorch_model-00004-of-00017.bin",
|
45 |
+
"model.layers.11.self_attn.q_proj.weight": "pytorch_model-00004-of-00017.bin",
|
46 |
+
"model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00017.bin",
|
47 |
+
"model.layers.11.self_attn.v_proj.weight": "pytorch_model-00004-of-00017.bin",
|
48 |
+
"model.layers.12.input_layernorm.weight": "pytorch_model-00004-of-00017.bin",
|
49 |
+
"model.layers.12.mlp.down_proj.weight": "pytorch_model-00004-of-00017.bin",
|
50 |
+
"model.layers.12.mlp.gate_proj.weight": "pytorch_model-00004-of-00017.bin",
|
51 |
+
"model.layers.12.mlp.up_proj.weight": "pytorch_model-00004-of-00017.bin",
|
52 |
+
"model.layers.12.post_attention_layernorm.weight": "pytorch_model-00004-of-00017.bin",
|
53 |
+
"model.layers.12.self_attn.k_proj.weight": "pytorch_model-00004-of-00017.bin",
|
54 |
+
"model.layers.12.self_attn.o_proj.weight": "pytorch_model-00004-of-00017.bin",
|
55 |
+
"model.layers.12.self_attn.q_proj.weight": "pytorch_model-00004-of-00017.bin",
|
56 |
+
"model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00017.bin",
|
57 |
+
"model.layers.12.self_attn.v_proj.weight": "pytorch_model-00004-of-00017.bin",
|
58 |
+
"model.layers.13.input_layernorm.weight": "pytorch_model-00004-of-00017.bin",
|
59 |
+
"model.layers.13.mlp.down_proj.weight": "pytorch_model-00004-of-00017.bin",
|
60 |
+
"model.layers.13.mlp.gate_proj.weight": "pytorch_model-00004-of-00017.bin",
|
61 |
+
"model.layers.13.mlp.up_proj.weight": "pytorch_model-00004-of-00017.bin",
|
62 |
+
"model.layers.13.post_attention_layernorm.weight": "pytorch_model-00004-of-00017.bin",
|
63 |
+
"model.layers.13.self_attn.k_proj.weight": "pytorch_model-00004-of-00017.bin",
|
64 |
+
"model.layers.13.self_attn.o_proj.weight": "pytorch_model-00004-of-00017.bin",
|
65 |
+
"model.layers.13.self_attn.q_proj.weight": "pytorch_model-00004-of-00017.bin",
|
66 |
+
"model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00017.bin",
|
67 |
+
"model.layers.13.self_attn.v_proj.weight": "pytorch_model-00004-of-00017.bin",
|
68 |
+
"model.layers.14.input_layernorm.weight": "pytorch_model-00005-of-00017.bin",
|
69 |
+
"model.layers.14.mlp.down_proj.weight": "pytorch_model-00005-of-00017.bin",
|
70 |
+
"model.layers.14.mlp.gate_proj.weight": "pytorch_model-00005-of-00017.bin",
|
71 |
+
"model.layers.14.mlp.up_proj.weight": "pytorch_model-00005-of-00017.bin",
|
72 |
+
"model.layers.14.post_attention_layernorm.weight": "pytorch_model-00005-of-00017.bin",
|
73 |
+
"model.layers.14.self_attn.k_proj.weight": "pytorch_model-00004-of-00017.bin",
|
74 |
+
"model.layers.14.self_attn.o_proj.weight": "pytorch_model-00005-of-00017.bin",
|
75 |
+
"model.layers.14.self_attn.q_proj.weight": "pytorch_model-00004-of-00017.bin",
|
76 |
+
"model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00017.bin",
|
77 |
+
"model.layers.14.self_attn.v_proj.weight": "pytorch_model-00004-of-00017.bin",
|
78 |
+
"model.layers.15.input_layernorm.weight": "pytorch_model-00005-of-00017.bin",
|
79 |
+
"model.layers.15.mlp.down_proj.weight": "pytorch_model-00005-of-00017.bin",
|
80 |
+
"model.layers.15.mlp.gate_proj.weight": "pytorch_model-00005-of-00017.bin",
|
81 |
+
"model.layers.15.mlp.up_proj.weight": "pytorch_model-00005-of-00017.bin",
|
82 |
+
"model.layers.15.post_attention_layernorm.weight": "pytorch_model-00005-of-00017.bin",
|
83 |
+
"model.layers.15.self_attn.k_proj.weight": "pytorch_model-00005-of-00017.bin",
|
84 |
+
"model.layers.15.self_attn.o_proj.weight": "pytorch_model-00005-of-00017.bin",
|
85 |
+
"model.layers.15.self_attn.q_proj.weight": "pytorch_model-00005-of-00017.bin",
|
86 |
+
"model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00017.bin",
|
87 |
+
"model.layers.15.self_attn.v_proj.weight": "pytorch_model-00005-of-00017.bin",
|
88 |
+
"model.layers.16.input_layernorm.weight": "pytorch_model-00005-of-00017.bin",
|
89 |
+
"model.layers.16.mlp.down_proj.weight": "pytorch_model-00005-of-00017.bin",
|
90 |
+
"model.layers.16.mlp.gate_proj.weight": "pytorch_model-00005-of-00017.bin",
|
91 |
+
"model.layers.16.mlp.up_proj.weight": "pytorch_model-00005-of-00017.bin",
|
92 |
+
"model.layers.16.post_attention_layernorm.weight": "pytorch_model-00005-of-00017.bin",
|
93 |
+
"model.layers.16.self_attn.k_proj.weight": "pytorch_model-00005-of-00017.bin",
|
94 |
+
"model.layers.16.self_attn.o_proj.weight": "pytorch_model-00005-of-00017.bin",
|
95 |
+
"model.layers.16.self_attn.q_proj.weight": "pytorch_model-00005-of-00017.bin",
|
96 |
+
"model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00017.bin",
|
97 |
+
"model.layers.16.self_attn.v_proj.weight": "pytorch_model-00005-of-00017.bin",
|
98 |
+
"model.layers.17.input_layernorm.weight": "pytorch_model-00006-of-00017.bin",
|
99 |
+
"model.layers.17.mlp.down_proj.weight": "pytorch_model-00005-of-00017.bin",
|
100 |
+
"model.layers.17.mlp.gate_proj.weight": "pytorch_model-00005-of-00017.bin",
|
101 |
+
"model.layers.17.mlp.up_proj.weight": "pytorch_model-00006-of-00017.bin",
|
102 |
+
"model.layers.17.post_attention_layernorm.weight": "pytorch_model-00006-of-00017.bin",
|
103 |
+
"model.layers.17.self_attn.k_proj.weight": "pytorch_model-00005-of-00017.bin",
|
104 |
+
"model.layers.17.self_attn.o_proj.weight": "pytorch_model-00005-of-00017.bin",
|
105 |
+
"model.layers.17.self_attn.q_proj.weight": "pytorch_model-00005-of-00017.bin",
|
106 |
+
"model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00017.bin",
|
107 |
+
"model.layers.17.self_attn.v_proj.weight": "pytorch_model-00005-of-00017.bin",
|
108 |
+
"model.layers.18.input_layernorm.weight": "pytorch_model-00006-of-00017.bin",
|
109 |
+
"model.layers.18.mlp.down_proj.weight": "pytorch_model-00006-of-00017.bin",
|
110 |
+
"model.layers.18.mlp.gate_proj.weight": "pytorch_model-00006-of-00017.bin",
|
111 |
+
"model.layers.18.mlp.up_proj.weight": "pytorch_model-00006-of-00017.bin",
|
112 |
+
"model.layers.18.post_attention_layernorm.weight": "pytorch_model-00006-of-00017.bin",
|
113 |
+
"model.layers.18.self_attn.k_proj.weight": "pytorch_model-00006-of-00017.bin",
|
114 |
+
"model.layers.18.self_attn.o_proj.weight": "pytorch_model-00006-of-00017.bin",
|
115 |
+
"model.layers.18.self_attn.q_proj.weight": "pytorch_model-00006-of-00017.bin",
|
116 |
+
"model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00006-of-00017.bin",
|
117 |
+
"model.layers.18.self_attn.v_proj.weight": "pytorch_model-00006-of-00017.bin",
|
118 |
+
"model.layers.19.input_layernorm.weight": "pytorch_model-00006-of-00017.bin",
|
119 |
+
"model.layers.19.mlp.down_proj.weight": "pytorch_model-00006-of-00017.bin",
|
120 |
+
"model.layers.19.mlp.gate_proj.weight": "pytorch_model-00006-of-00017.bin",
|
121 |
+
"model.layers.19.mlp.up_proj.weight": "pytorch_model-00006-of-00017.bin",
|
122 |
+
"model.layers.19.post_attention_layernorm.weight": "pytorch_model-00006-of-00017.bin",
|
123 |
+
"model.layers.19.self_attn.k_proj.weight": "pytorch_model-00006-of-00017.bin",
|
124 |
+
"model.layers.19.self_attn.o_proj.weight": "pytorch_model-00006-of-00017.bin",
|
125 |
+
"model.layers.19.self_attn.q_proj.weight": "pytorch_model-00006-of-00017.bin",
|
126 |
+
"model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00006-of-00017.bin",
|
127 |
+
"model.layers.19.self_attn.v_proj.weight": "pytorch_model-00006-of-00017.bin",
|
128 |
+
"model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00017.bin",
|
129 |
+
"model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00017.bin",
|
130 |
+
"model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00017.bin",
|
131 |
+
"model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00017.bin",
|
132 |
+
"model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00017.bin",
|
133 |
+
"model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00017.bin",
|
134 |
+
"model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00017.bin",
|
135 |
+
"model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00017.bin",
|
136 |
+
"model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00017.bin",
|
137 |
+
"model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00017.bin",
|
138 |
+
"model.layers.20.input_layernorm.weight": "pytorch_model-00006-of-00017.bin",
|
139 |
+
"model.layers.20.mlp.down_proj.weight": "pytorch_model-00006-of-00017.bin",
|
140 |
+
"model.layers.20.mlp.gate_proj.weight": "pytorch_model-00006-of-00017.bin",
|
141 |
+
"model.layers.20.mlp.up_proj.weight": "pytorch_model-00006-of-00017.bin",
|
142 |
+
"model.layers.20.post_attention_layernorm.weight": "pytorch_model-00006-of-00017.bin",
|
143 |
+
"model.layers.20.self_attn.k_proj.weight": "pytorch_model-00006-of-00017.bin",
|
144 |
+
"model.layers.20.self_attn.o_proj.weight": "pytorch_model-00006-of-00017.bin",
|
145 |
+
"model.layers.20.self_attn.q_proj.weight": "pytorch_model-00006-of-00017.bin",
|
146 |
+
"model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00006-of-00017.bin",
|
147 |
+
"model.layers.20.self_attn.v_proj.weight": "pytorch_model-00006-of-00017.bin",
|
148 |
+
"model.layers.21.input_layernorm.weight": "pytorch_model-00007-of-00017.bin",
|
149 |
+
"model.layers.21.mlp.down_proj.weight": "pytorch_model-00007-of-00017.bin",
|
150 |
+
"model.layers.21.mlp.gate_proj.weight": "pytorch_model-00007-of-00017.bin",
|
151 |
+
"model.layers.21.mlp.up_proj.weight": "pytorch_model-00007-of-00017.bin",
|
152 |
+
"model.layers.21.post_attention_layernorm.weight": "pytorch_model-00007-of-00017.bin",
|
153 |
+
"model.layers.21.self_attn.k_proj.weight": "pytorch_model-00006-of-00017.bin",
|
154 |
+
"model.layers.21.self_attn.o_proj.weight": "pytorch_model-00006-of-00017.bin",
|
155 |
+
"model.layers.21.self_attn.q_proj.weight": "pytorch_model-00006-of-00017.bin",
|
156 |
+
"model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00006-of-00017.bin",
|
157 |
+
"model.layers.21.self_attn.v_proj.weight": "pytorch_model-00006-of-00017.bin",
|
158 |
+
"model.layers.22.input_layernorm.weight": "pytorch_model-00007-of-00017.bin",
|
159 |
+
"model.layers.22.mlp.down_proj.weight": "pytorch_model-00007-of-00017.bin",
|
160 |
+
"model.layers.22.mlp.gate_proj.weight": "pytorch_model-00007-of-00017.bin",
|
161 |
+
"model.layers.22.mlp.up_proj.weight": "pytorch_model-00007-of-00017.bin",
|
162 |
+
"model.layers.22.post_attention_layernorm.weight": "pytorch_model-00007-of-00017.bin",
|
163 |
+
"model.layers.22.self_attn.k_proj.weight": "pytorch_model-00007-of-00017.bin",
|
164 |
+
"model.layers.22.self_attn.o_proj.weight": "pytorch_model-00007-of-00017.bin",
|
165 |
+
"model.layers.22.self_attn.q_proj.weight": "pytorch_model-00007-of-00017.bin",
|
166 |
+
"model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00007-of-00017.bin",
|
167 |
+
"model.layers.22.self_attn.v_proj.weight": "pytorch_model-00007-of-00017.bin",
|
168 |
+
"model.layers.23.input_layernorm.weight": "pytorch_model-00007-of-00017.bin",
|
169 |
+
"model.layers.23.mlp.down_proj.weight": "pytorch_model-00007-of-00017.bin",
|
170 |
+
"model.layers.23.mlp.gate_proj.weight": "pytorch_model-00007-of-00017.bin",
|
171 |
+
"model.layers.23.mlp.up_proj.weight": "pytorch_model-00007-of-00017.bin",
|
172 |
+
"model.layers.23.post_attention_layernorm.weight": "pytorch_model-00007-of-00017.bin",
|
173 |
+
"model.layers.23.self_attn.k_proj.weight": "pytorch_model-00007-of-00017.bin",
|
174 |
+
"model.layers.23.self_attn.o_proj.weight": "pytorch_model-00007-of-00017.bin",
|
175 |
+
"model.layers.23.self_attn.q_proj.weight": "pytorch_model-00007-of-00017.bin",
|
176 |
+
"model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00007-of-00017.bin",
|
177 |
+
"model.layers.23.self_attn.v_proj.weight": "pytorch_model-00007-of-00017.bin",
|
178 |
+
"model.layers.24.input_layernorm.weight": "pytorch_model-00007-of-00017.bin",
|
179 |
+
"model.layers.24.mlp.down_proj.weight": "pytorch_model-00007-of-00017.bin",
|
180 |
+
"model.layers.24.mlp.gate_proj.weight": "pytorch_model-00007-of-00017.bin",
|
181 |
+
"model.layers.24.mlp.up_proj.weight": "pytorch_model-00007-of-00017.bin",
|
182 |
+
"model.layers.24.post_attention_layernorm.weight": "pytorch_model-00007-of-00017.bin",
|
183 |
+
"model.layers.24.self_attn.k_proj.weight": "pytorch_model-00007-of-00017.bin",
|
184 |
+
"model.layers.24.self_attn.o_proj.weight": "pytorch_model-00007-of-00017.bin",
|
185 |
+
"model.layers.24.self_attn.q_proj.weight": "pytorch_model-00007-of-00017.bin",
|
186 |
+
"model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00007-of-00017.bin",
|
187 |
+
"model.layers.24.self_attn.v_proj.weight": "pytorch_model-00007-of-00017.bin",
|
188 |
+
"model.layers.25.input_layernorm.weight": "pytorch_model-00008-of-00017.bin",
|
189 |
+
"model.layers.25.mlp.down_proj.weight": "pytorch_model-00008-of-00017.bin",
|
190 |
+
"model.layers.25.mlp.gate_proj.weight": "pytorch_model-00008-of-00017.bin",
|
191 |
+
"model.layers.25.mlp.up_proj.weight": "pytorch_model-00008-of-00017.bin",
|
192 |
+
"model.layers.25.post_attention_layernorm.weight": "pytorch_model-00008-of-00017.bin",
|
193 |
+
"model.layers.25.self_attn.k_proj.weight": "pytorch_model-00008-of-00017.bin",
|
194 |
+
"model.layers.25.self_attn.o_proj.weight": "pytorch_model-00008-of-00017.bin",
|
195 |
+
"model.layers.25.self_attn.q_proj.weight": "pytorch_model-00008-of-00017.bin",
|
196 |
+
"model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00008-of-00017.bin",
|
197 |
+
"model.layers.25.self_attn.v_proj.weight": "pytorch_model-00008-of-00017.bin",
|
198 |
+
"model.layers.26.input_layernorm.weight": "pytorch_model-00008-of-00017.bin",
|
199 |
+
"model.layers.26.mlp.down_proj.weight": "pytorch_model-00008-of-00017.bin",
|
200 |
+
"model.layers.26.mlp.gate_proj.weight": "pytorch_model-00008-of-00017.bin",
|
201 |
+
"model.layers.26.mlp.up_proj.weight": "pytorch_model-00008-of-00017.bin",
|
202 |
+
"model.layers.26.post_attention_layernorm.weight": "pytorch_model-00008-of-00017.bin",
|
203 |
+
"model.layers.26.self_attn.k_proj.weight": "pytorch_model-00008-of-00017.bin",
|
204 |
+
"model.layers.26.self_attn.o_proj.weight": "pytorch_model-00008-of-00017.bin",
|
205 |
+
"model.layers.26.self_attn.q_proj.weight": "pytorch_model-00008-of-00017.bin",
|
206 |
+
"model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00008-of-00017.bin",
|
207 |
+
"model.layers.26.self_attn.v_proj.weight": "pytorch_model-00008-of-00017.bin",
|
208 |
+
"model.layers.27.input_layernorm.weight": "pytorch_model-00008-of-00017.bin",
|
209 |
+
"model.layers.27.mlp.down_proj.weight": "pytorch_model-00008-of-00017.bin",
|
210 |
+
"model.layers.27.mlp.gate_proj.weight": "pytorch_model-00008-of-00017.bin",
|
211 |
+
"model.layers.27.mlp.up_proj.weight": "pytorch_model-00008-of-00017.bin",
|
212 |
+
"model.layers.27.post_attention_layernorm.weight": "pytorch_model-00008-of-00017.bin",
|
213 |
+
"model.layers.27.self_attn.k_proj.weight": "pytorch_model-00008-of-00017.bin",
|
214 |
+
"model.layers.27.self_attn.o_proj.weight": "pytorch_model-00008-of-00017.bin",
|
215 |
+
"model.layers.27.self_attn.q_proj.weight": "pytorch_model-00008-of-00017.bin",
|
216 |
+
"model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00008-of-00017.bin",
|
217 |
+
"model.layers.27.self_attn.v_proj.weight": "pytorch_model-00008-of-00017.bin",
|
218 |
+
"model.layers.28.input_layernorm.weight": "pytorch_model-00009-of-00017.bin",
|
219 |
+
"model.layers.28.mlp.down_proj.weight": "pytorch_model-00009-of-00017.bin",
|
220 |
+
"model.layers.28.mlp.gate_proj.weight": "pytorch_model-00008-of-00017.bin",
|
221 |
+
"model.layers.28.mlp.up_proj.weight": "pytorch_model-00009-of-00017.bin",
|
222 |
+
"model.layers.28.post_attention_layernorm.weight": "pytorch_model-00009-of-00017.bin",
|
223 |
+
"model.layers.28.self_attn.k_proj.weight": "pytorch_model-00008-of-00017.bin",
|
224 |
+
"model.layers.28.self_attn.o_proj.weight": "pytorch_model-00008-of-00017.bin",
|
225 |
+
"model.layers.28.self_attn.q_proj.weight": "pytorch_model-00008-of-00017.bin",
|
226 |
+
"model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00008-of-00017.bin",
|
227 |
+
"model.layers.28.self_attn.v_proj.weight": "pytorch_model-00008-of-00017.bin",
|
228 |
+
"model.layers.29.input_layernorm.weight": "pytorch_model-00009-of-00017.bin",
|
229 |
+
"model.layers.29.mlp.down_proj.weight": "pytorch_model-00009-of-00017.bin",
|
230 |
+
"model.layers.29.mlp.gate_proj.weight": "pytorch_model-00009-of-00017.bin",
|
231 |
+
"model.layers.29.mlp.up_proj.weight": "pytorch_model-00009-of-00017.bin",
|
232 |
+
"model.layers.29.post_attention_layernorm.weight": "pytorch_model-00009-of-00017.bin",
|
233 |
+
"model.layers.29.self_attn.k_proj.weight": "pytorch_model-00009-of-00017.bin",
|
234 |
+
"model.layers.29.self_attn.o_proj.weight": "pytorch_model-00009-of-00017.bin",
|
235 |
+
"model.layers.29.self_attn.q_proj.weight": "pytorch_model-00009-of-00017.bin",
|
236 |
+
"model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00009-of-00017.bin",
|
237 |
+
"model.layers.29.self_attn.v_proj.weight": "pytorch_model-00009-of-00017.bin",
|
238 |
+
"model.layers.3.input_layernorm.weight": "pytorch_model-00002-of-00017.bin",
|
239 |
+
"model.layers.3.mlp.down_proj.weight": "pytorch_model-00002-of-00017.bin",
|
240 |
+
"model.layers.3.mlp.gate_proj.weight": "pytorch_model-00002-of-00017.bin",
|
241 |
+
"model.layers.3.mlp.up_proj.weight": "pytorch_model-00002-of-00017.bin",
|
242 |
+
"model.layers.3.post_attention_layernorm.weight": "pytorch_model-00002-of-00017.bin",
|
243 |
+
"model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00017.bin",
|
244 |
+
"model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00017.bin",
|
245 |
+
"model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00017.bin",
|
246 |
+
"model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00017.bin",
|
247 |
+
"model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00017.bin",
|
248 |
+
"model.layers.30.input_layernorm.weight": "pytorch_model-00009-of-00017.bin",
|
249 |
+
"model.layers.30.mlp.down_proj.weight": "pytorch_model-00009-of-00017.bin",
|
250 |
+
"model.layers.30.mlp.gate_proj.weight": "pytorch_model-00009-of-00017.bin",
|
251 |
+
"model.layers.30.mlp.up_proj.weight": "pytorch_model-00009-of-00017.bin",
|
252 |
+
"model.layers.30.post_attention_layernorm.weight": "pytorch_model-00009-of-00017.bin",
|
253 |
+
"model.layers.30.self_attn.k_proj.weight": "pytorch_model-00009-of-00017.bin",
|
254 |
+
"model.layers.30.self_attn.o_proj.weight": "pytorch_model-00009-of-00017.bin",
|
255 |
+
"model.layers.30.self_attn.q_proj.weight": "pytorch_model-00009-of-00017.bin",
|
256 |
+
"model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00009-of-00017.bin",
|
257 |
+
"model.layers.30.self_attn.v_proj.weight": "pytorch_model-00009-of-00017.bin",
|
258 |
+
"model.layers.31.input_layernorm.weight": "pytorch_model-00009-of-00017.bin",
|
259 |
+
"model.layers.31.mlp.down_proj.weight": "pytorch_model-00009-of-00017.bin",
|
260 |
+
"model.layers.31.mlp.gate_proj.weight": "pytorch_model-00009-of-00017.bin",
|
261 |
+
"model.layers.31.mlp.up_proj.weight": "pytorch_model-00009-of-00017.bin",
|
262 |
+
"model.layers.31.post_attention_layernorm.weight": "pytorch_model-00009-of-00017.bin",
|
263 |
+
"model.layers.31.self_attn.k_proj.weight": "pytorch_model-00009-of-00017.bin",
|
264 |
+
"model.layers.31.self_attn.o_proj.weight": "pytorch_model-00009-of-00017.bin",
|
265 |
+
"model.layers.31.self_attn.q_proj.weight": "pytorch_model-00009-of-00017.bin",
|
266 |
+
"model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00009-of-00017.bin",
|
267 |
+
"model.layers.31.self_attn.v_proj.weight": "pytorch_model-00009-of-00017.bin",
|
268 |
+
"model.layers.32.input_layernorm.weight": "pytorch_model-00010-of-00017.bin",
|
269 |
+
"model.layers.32.mlp.down_proj.weight": "pytorch_model-00010-of-00017.bin",
|
270 |
+
"model.layers.32.mlp.gate_proj.weight": "pytorch_model-00010-of-00017.bin",
|
271 |
+
"model.layers.32.mlp.up_proj.weight": "pytorch_model-00010-of-00017.bin",
|
272 |
+
"model.layers.32.post_attention_layernorm.weight": "pytorch_model-00010-of-00017.bin",
|
273 |
+
"model.layers.32.self_attn.k_proj.weight": "pytorch_model-00009-of-00017.bin",
|
274 |
+
"model.layers.32.self_attn.o_proj.weight": "pytorch_model-00010-of-00017.bin",
|
275 |
+
"model.layers.32.self_attn.q_proj.weight": "pytorch_model-00009-of-00017.bin",
|
276 |
+
"model.layers.32.self_attn.rotary_emb.inv_freq": "pytorch_model-00010-of-00017.bin",
|
277 |
+
"model.layers.32.self_attn.v_proj.weight": "pytorch_model-00009-of-00017.bin",
|
278 |
+
"model.layers.33.input_layernorm.weight": "pytorch_model-00010-of-00017.bin",
|
279 |
+
"model.layers.33.mlp.down_proj.weight": "pytorch_model-00010-of-00017.bin",
|
280 |
+
"model.layers.33.mlp.gate_proj.weight": "pytorch_model-00010-of-00017.bin",
|
281 |
+
"model.layers.33.mlp.up_proj.weight": "pytorch_model-00010-of-00017.bin",
|
282 |
+
"model.layers.33.post_attention_layernorm.weight": "pytorch_model-00010-of-00017.bin",
|
283 |
+
"model.layers.33.self_attn.k_proj.weight": "pytorch_model-00010-of-00017.bin",
|
284 |
+
"model.layers.33.self_attn.o_proj.weight": "pytorch_model-00010-of-00017.bin",
|
285 |
+
"model.layers.33.self_attn.q_proj.weight": "pytorch_model-00010-of-00017.bin",
|
286 |
+
"model.layers.33.self_attn.rotary_emb.inv_freq": "pytorch_model-00010-of-00017.bin",
|
287 |
+
"model.layers.33.self_attn.v_proj.weight": "pytorch_model-00010-of-00017.bin",
|
288 |
+
"model.layers.34.input_layernorm.weight": "pytorch_model-00010-of-00017.bin",
|
289 |
+
"model.layers.34.mlp.down_proj.weight": "pytorch_model-00010-of-00017.bin",
|
290 |
+
"model.layers.34.mlp.gate_proj.weight": "pytorch_model-00010-of-00017.bin",
|
291 |
+
"model.layers.34.mlp.up_proj.weight": "pytorch_model-00010-of-00017.bin",
|
292 |
+
"model.layers.34.post_attention_layernorm.weight": "pytorch_model-00010-of-00017.bin",
|
293 |
+
"model.layers.34.self_attn.k_proj.weight": "pytorch_model-00010-of-00017.bin",
|
294 |
+
"model.layers.34.self_attn.o_proj.weight": "pytorch_model-00010-of-00017.bin",
|
295 |
+
"model.layers.34.self_attn.q_proj.weight": "pytorch_model-00010-of-00017.bin",
|
296 |
+
"model.layers.34.self_attn.rotary_emb.inv_freq": "pytorch_model-00010-of-00017.bin",
|
297 |
+
"model.layers.34.self_attn.v_proj.weight": "pytorch_model-00010-of-00017.bin",
|
298 |
+
"model.layers.35.input_layernorm.weight": "pytorch_model-00011-of-00017.bin",
|
299 |
+
"model.layers.35.mlp.down_proj.weight": "pytorch_model-00010-of-00017.bin",
|
300 |
+
"model.layers.35.mlp.gate_proj.weight": "pytorch_model-00010-of-00017.bin",
|
301 |
+
"model.layers.35.mlp.up_proj.weight": "pytorch_model-00011-of-00017.bin",
|
302 |
+
"model.layers.35.post_attention_layernorm.weight": "pytorch_model-00011-of-00017.bin",
|
303 |
+
"model.layers.35.self_attn.k_proj.weight": "pytorch_model-00010-of-00017.bin",
|
304 |
+
"model.layers.35.self_attn.o_proj.weight": "pytorch_model-00010-of-00017.bin",
|
305 |
+
"model.layers.35.self_attn.q_proj.weight": "pytorch_model-00010-of-00017.bin",
|
306 |
+
"model.layers.35.self_attn.rotary_emb.inv_freq": "pytorch_model-00010-of-00017.bin",
|
307 |
+
"model.layers.35.self_attn.v_proj.weight": "pytorch_model-00010-of-00017.bin",
|
308 |
+
"model.layers.36.input_layernorm.weight": "pytorch_model-00011-of-00017.bin",
|
309 |
+
"model.layers.36.mlp.down_proj.weight": "pytorch_model-00011-of-00017.bin",
|
310 |
+
"model.layers.36.mlp.gate_proj.weight": "pytorch_model-00011-of-00017.bin",
|
311 |
+
"model.layers.36.mlp.up_proj.weight": "pytorch_model-00011-of-00017.bin",
|
312 |
+
"model.layers.36.post_attention_layernorm.weight": "pytorch_model-00011-of-00017.bin",
|
313 |
+
"model.layers.36.self_attn.k_proj.weight": "pytorch_model-00011-of-00017.bin",
|
314 |
+
"model.layers.36.self_attn.o_proj.weight": "pytorch_model-00011-of-00017.bin",
|
315 |
+
"model.layers.36.self_attn.q_proj.weight": "pytorch_model-00011-of-00017.bin",
|
316 |
+
"model.layers.36.self_attn.rotary_emb.inv_freq": "pytorch_model-00011-of-00017.bin",
|
317 |
+
"model.layers.36.self_attn.v_proj.weight": "pytorch_model-00011-of-00017.bin",
|
318 |
+
"model.layers.37.input_layernorm.weight": "pytorch_model-00011-of-00017.bin",
|
319 |
+
"model.layers.37.mlp.down_proj.weight": "pytorch_model-00011-of-00017.bin",
|
320 |
+
"model.layers.37.mlp.gate_proj.weight": "pytorch_model-00011-of-00017.bin",
|
321 |
+
"model.layers.37.mlp.up_proj.weight": "pytorch_model-00011-of-00017.bin",
|
322 |
+
"model.layers.37.post_attention_layernorm.weight": "pytorch_model-00011-of-00017.bin",
|
323 |
+
"model.layers.37.self_attn.k_proj.weight": "pytorch_model-00011-of-00017.bin",
|
324 |
+
"model.layers.37.self_attn.o_proj.weight": "pytorch_model-00011-of-00017.bin",
|
325 |
+
"model.layers.37.self_attn.q_proj.weight": "pytorch_model-00011-of-00017.bin",
|
326 |
+
"model.layers.37.self_attn.rotary_emb.inv_freq": "pytorch_model-00011-of-00017.bin",
|
327 |
+
"model.layers.37.self_attn.v_proj.weight": "pytorch_model-00011-of-00017.bin",
|
328 |
+
"model.layers.38.input_layernorm.weight": "pytorch_model-00011-of-00017.bin",
|
329 |
+
"model.layers.38.mlp.down_proj.weight": "pytorch_model-00011-of-00017.bin",
|
330 |
+
"model.layers.38.mlp.gate_proj.weight": "pytorch_model-00011-of-00017.bin",
|
331 |
+
"model.layers.38.mlp.up_proj.weight": "pytorch_model-00011-of-00017.bin",
|
332 |
+
"model.layers.38.post_attention_layernorm.weight": "pytorch_model-00011-of-00017.bin",
|
333 |
+
"model.layers.38.self_attn.k_proj.weight": "pytorch_model-00011-of-00017.bin",
|
334 |
+
"model.layers.38.self_attn.o_proj.weight": "pytorch_model-00011-of-00017.bin",
|
335 |
+
"model.layers.38.self_attn.q_proj.weight": "pytorch_model-00011-of-00017.bin",
|
336 |
+
"model.layers.38.self_attn.rotary_emb.inv_freq": "pytorch_model-00011-of-00017.bin",
|
337 |
+
"model.layers.38.self_attn.v_proj.weight": "pytorch_model-00011-of-00017.bin",
|
338 |
+
"model.layers.39.input_layernorm.weight": "pytorch_model-00012-of-00017.bin",
|
339 |
+
"model.layers.39.mlp.down_proj.weight": "pytorch_model-00012-of-00017.bin",
|
340 |
+
"model.layers.39.mlp.gate_proj.weight": "pytorch_model-00012-of-00017.bin",
|
341 |
+
"model.layers.39.mlp.up_proj.weight": "pytorch_model-00012-of-00017.bin",
|
342 |
+
"model.layers.39.post_attention_layernorm.weight": "pytorch_model-00012-of-00017.bin",
|
343 |
+
"model.layers.39.self_attn.k_proj.weight": "pytorch_model-00011-of-00017.bin",
|
344 |
+
"model.layers.39.self_attn.o_proj.weight": "pytorch_model-00011-of-00017.bin",
|
345 |
+
"model.layers.39.self_attn.q_proj.weight": "pytorch_model-00011-of-00017.bin",
|
346 |
+
"model.layers.39.self_attn.rotary_emb.inv_freq": "pytorch_model-00011-of-00017.bin",
|
347 |
+
"model.layers.39.self_attn.v_proj.weight": "pytorch_model-00011-of-00017.bin",
|
348 |
+
"model.layers.4.input_layernorm.weight": "pytorch_model-00002-of-00017.bin",
|
349 |
+
"model.layers.4.mlp.down_proj.weight": "pytorch_model-00002-of-00017.bin",
|
350 |
+
"model.layers.4.mlp.gate_proj.weight": "pytorch_model-00002-of-00017.bin",
|
351 |
+
"model.layers.4.mlp.up_proj.weight": "pytorch_model-00002-of-00017.bin",
|
352 |
+
"model.layers.4.post_attention_layernorm.weight": "pytorch_model-00002-of-00017.bin",
|
353 |
+
"model.layers.4.self_attn.k_proj.weight": "pytorch_model-00002-of-00017.bin",
|
354 |
+
"model.layers.4.self_attn.o_proj.weight": "pytorch_model-00002-of-00017.bin",
|
355 |
+
"model.layers.4.self_attn.q_proj.weight": "pytorch_model-00002-of-00017.bin",
|
356 |
+
"model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00017.bin",
|
357 |
+
"model.layers.4.self_attn.v_proj.weight": "pytorch_model-00002-of-00017.bin",
|
358 |
+
"model.layers.40.input_layernorm.weight": "pytorch_model-00012-of-00017.bin",
|
359 |
+
"model.layers.40.mlp.down_proj.weight": "pytorch_model-00012-of-00017.bin",
|
360 |
+
"model.layers.40.mlp.gate_proj.weight": "pytorch_model-00012-of-00017.bin",
|
361 |
+
"model.layers.40.mlp.up_proj.weight": "pytorch_model-00012-of-00017.bin",
|
362 |
+
"model.layers.40.post_attention_layernorm.weight": "pytorch_model-00012-of-00017.bin",
|
363 |
+
"model.layers.40.self_attn.k_proj.weight": "pytorch_model-00012-of-00017.bin",
|
364 |
+
"model.layers.40.self_attn.o_proj.weight": "pytorch_model-00012-of-00017.bin",
|
365 |
+
"model.layers.40.self_attn.q_proj.weight": "pytorch_model-00012-of-00017.bin",
|
366 |
+
"model.layers.40.self_attn.rotary_emb.inv_freq": "pytorch_model-00012-of-00017.bin",
|
367 |
+
"model.layers.40.self_attn.v_proj.weight": "pytorch_model-00012-of-00017.bin",
|
368 |
+
"model.layers.41.input_layernorm.weight": "pytorch_model-00012-of-00017.bin",
|
369 |
+
"model.layers.41.mlp.down_proj.weight": "pytorch_model-00012-of-00017.bin",
|
370 |
+
"model.layers.41.mlp.gate_proj.weight": "pytorch_model-00012-of-00017.bin",
|
371 |
+
"model.layers.41.mlp.up_proj.weight": "pytorch_model-00012-of-00017.bin",
|
372 |
+
"model.layers.41.post_attention_layernorm.weight": "pytorch_model-00012-of-00017.bin",
|
373 |
+
"model.layers.41.self_attn.k_proj.weight": "pytorch_model-00012-of-00017.bin",
|
374 |
+
"model.layers.41.self_attn.o_proj.weight": "pytorch_model-00012-of-00017.bin",
|
375 |
+
"model.layers.41.self_attn.q_proj.weight": "pytorch_model-00012-of-00017.bin",
|
376 |
+
"model.layers.41.self_attn.rotary_emb.inv_freq": "pytorch_model-00012-of-00017.bin",
|
377 |
+
"model.layers.41.self_attn.v_proj.weight": "pytorch_model-00012-of-00017.bin",
|
378 |
+
"model.layers.42.input_layernorm.weight": "pytorch_model-00012-of-00017.bin",
|
379 |
+
"model.layers.42.mlp.down_proj.weight": "pytorch_model-00012-of-00017.bin",
|
380 |
+
"model.layers.42.mlp.gate_proj.weight": "pytorch_model-00012-of-00017.bin",
|
381 |
+
"model.layers.42.mlp.up_proj.weight": "pytorch_model-00012-of-00017.bin",
|
382 |
+
"model.layers.42.post_attention_layernorm.weight": "pytorch_model-00012-of-00017.bin",
|
383 |
+
"model.layers.42.self_attn.k_proj.weight": "pytorch_model-00012-of-00017.bin",
|
384 |
+
"model.layers.42.self_attn.o_proj.weight": "pytorch_model-00012-of-00017.bin",
|
385 |
+
"model.layers.42.self_attn.q_proj.weight": "pytorch_model-00012-of-00017.bin",
|
386 |
+
"model.layers.42.self_attn.rotary_emb.inv_freq": "pytorch_model-00012-of-00017.bin",
|
387 |
+
"model.layers.42.self_attn.v_proj.weight": "pytorch_model-00012-of-00017.bin",
|
388 |
+
"model.layers.43.input_layernorm.weight": "pytorch_model-00013-of-00017.bin",
|
389 |
+
"model.layers.43.mlp.down_proj.weight": "pytorch_model-00013-of-00017.bin",
|
390 |
+
"model.layers.43.mlp.gate_proj.weight": "pytorch_model-00013-of-00017.bin",
|
391 |
+
"model.layers.43.mlp.up_proj.weight": "pytorch_model-00013-of-00017.bin",
|
392 |
+
"model.layers.43.post_attention_layernorm.weight": "pytorch_model-00013-of-00017.bin",
|
393 |
+
"model.layers.43.self_attn.k_proj.weight": "pytorch_model-00013-of-00017.bin",
|
394 |
+
"model.layers.43.self_attn.o_proj.weight": "pytorch_model-00013-of-00017.bin",
|
395 |
+
"model.layers.43.self_attn.q_proj.weight": "pytorch_model-00013-of-00017.bin",
|
396 |
+
"model.layers.43.self_attn.rotary_emb.inv_freq": "pytorch_model-00013-of-00017.bin",
|
397 |
+
"model.layers.43.self_attn.v_proj.weight": "pytorch_model-00013-of-00017.bin",
|
398 |
+
"model.layers.44.input_layernorm.weight": "pytorch_model-00013-of-00017.bin",
|
399 |
+
"model.layers.44.mlp.down_proj.weight": "pytorch_model-00013-of-00017.bin",
|
400 |
+
"model.layers.44.mlp.gate_proj.weight": "pytorch_model-00013-of-00017.bin",
|
401 |
+
"model.layers.44.mlp.up_proj.weight": "pytorch_model-00013-of-00017.bin",
|
402 |
+
"model.layers.44.post_attention_layernorm.weight": "pytorch_model-00013-of-00017.bin",
|
403 |
+
"model.layers.44.self_attn.k_proj.weight": "pytorch_model-00013-of-00017.bin",
|
404 |
+
"model.layers.44.self_attn.o_proj.weight": "pytorch_model-00013-of-00017.bin",
|
405 |
+
"model.layers.44.self_attn.q_proj.weight": "pytorch_model-00013-of-00017.bin",
|
406 |
+
"model.layers.44.self_attn.rotary_emb.inv_freq": "pytorch_model-00013-of-00017.bin",
|
407 |
+
"model.layers.44.self_attn.v_proj.weight": "pytorch_model-00013-of-00017.bin",
|
408 |
+
"model.layers.45.input_layernorm.weight": "pytorch_model-00013-of-00017.bin",
|
409 |
+
"model.layers.45.mlp.down_proj.weight": "pytorch_model-00013-of-00017.bin",
|
410 |
+
"model.layers.45.mlp.gate_proj.weight": "pytorch_model-00013-of-00017.bin",
|
411 |
+
"model.layers.45.mlp.up_proj.weight": "pytorch_model-00013-of-00017.bin",
|
412 |
+
"model.layers.45.post_attention_layernorm.weight": "pytorch_model-00013-of-00017.bin",
|
413 |
+
"model.layers.45.self_attn.k_proj.weight": "pytorch_model-00013-of-00017.bin",
|
414 |
+
"model.layers.45.self_attn.o_proj.weight": "pytorch_model-00013-of-00017.bin",
|
415 |
+
"model.layers.45.self_attn.q_proj.weight": "pytorch_model-00013-of-00017.bin",
|
416 |
+
"model.layers.45.self_attn.rotary_emb.inv_freq": "pytorch_model-00013-of-00017.bin",
|
417 |
+
"model.layers.45.self_attn.v_proj.weight": "pytorch_model-00013-of-00017.bin",
|
418 |
+
"model.layers.46.input_layernorm.weight": "pytorch_model-00014-of-00017.bin",
|
419 |
+
"model.layers.46.mlp.down_proj.weight": "pytorch_model-00014-of-00017.bin",
|
420 |
+
"model.layers.46.mlp.gate_proj.weight": "pytorch_model-00013-of-00017.bin",
|
421 |
+
"model.layers.46.mlp.up_proj.weight": "pytorch_model-00014-of-00017.bin",
|
422 |
+
"model.layers.46.post_attention_layernorm.weight": "pytorch_model-00014-of-00017.bin",
|
423 |
+
"model.layers.46.self_attn.k_proj.weight": "pytorch_model-00013-of-00017.bin",
|
424 |
+
"model.layers.46.self_attn.o_proj.weight": "pytorch_model-00013-of-00017.bin",
|
425 |
+
"model.layers.46.self_attn.q_proj.weight": "pytorch_model-00013-of-00017.bin",
|
426 |
+
"model.layers.46.self_attn.rotary_emb.inv_freq": "pytorch_model-00013-of-00017.bin",
|
427 |
+
"model.layers.46.self_attn.v_proj.weight": "pytorch_model-00013-of-00017.bin",
|
428 |
+
"model.layers.47.input_layernorm.weight": "pytorch_model-00014-of-00017.bin",
|
429 |
+
"model.layers.47.mlp.down_proj.weight": "pytorch_model-00014-of-00017.bin",
|
430 |
+
"model.layers.47.mlp.gate_proj.weight": "pytorch_model-00014-of-00017.bin",
|
431 |
+
"model.layers.47.mlp.up_proj.weight": "pytorch_model-00014-of-00017.bin",
|
432 |
+
"model.layers.47.post_attention_layernorm.weight": "pytorch_model-00014-of-00017.bin",
|
433 |
+
"model.layers.47.self_attn.k_proj.weight": "pytorch_model-00014-of-00017.bin",
|
434 |
+
"model.layers.47.self_attn.o_proj.weight": "pytorch_model-00014-of-00017.bin",
|
435 |
+
"model.layers.47.self_attn.q_proj.weight": "pytorch_model-00014-of-00017.bin",
|
436 |
+
"model.layers.47.self_attn.rotary_emb.inv_freq": "pytorch_model-00014-of-00017.bin",
|
437 |
+
"model.layers.47.self_attn.v_proj.weight": "pytorch_model-00014-of-00017.bin",
|
438 |
+
"model.layers.48.input_layernorm.weight": "pytorch_model-00014-of-00017.bin",
|
439 |
+
"model.layers.48.mlp.down_proj.weight": "pytorch_model-00014-of-00017.bin",
|
440 |
+
"model.layers.48.mlp.gate_proj.weight": "pytorch_model-00014-of-00017.bin",
|
441 |
+
"model.layers.48.mlp.up_proj.weight": "pytorch_model-00014-of-00017.bin",
|
442 |
+
"model.layers.48.post_attention_layernorm.weight": "pytorch_model-00014-of-00017.bin",
|
443 |
+
"model.layers.48.self_attn.k_proj.weight": "pytorch_model-00014-of-00017.bin",
|
444 |
+
"model.layers.48.self_attn.o_proj.weight": "pytorch_model-00014-of-00017.bin",
|
445 |
+
"model.layers.48.self_attn.q_proj.weight": "pytorch_model-00014-of-00017.bin",
|
446 |
+
"model.layers.48.self_attn.rotary_emb.inv_freq": "pytorch_model-00014-of-00017.bin",
|
447 |
+
"model.layers.48.self_attn.v_proj.weight": "pytorch_model-00014-of-00017.bin",
|
448 |
+
"model.layers.49.input_layernorm.weight": "pytorch_model-00014-of-00017.bin",
|
449 |
+
"model.layers.49.mlp.down_proj.weight": "pytorch_model-00014-of-00017.bin",
|
450 |
+
"model.layers.49.mlp.gate_proj.weight": "pytorch_model-00014-of-00017.bin",
|
451 |
+
"model.layers.49.mlp.up_proj.weight": "pytorch_model-00014-of-00017.bin",
|
452 |
+
"model.layers.49.post_attention_layernorm.weight": "pytorch_model-00014-of-00017.bin",
|
453 |
+
"model.layers.49.self_attn.k_proj.weight": "pytorch_model-00014-of-00017.bin",
|
454 |
+
"model.layers.49.self_attn.o_proj.weight": "pytorch_model-00014-of-00017.bin",
|
455 |
+
"model.layers.49.self_attn.q_proj.weight": "pytorch_model-00014-of-00017.bin",
|
456 |
+
"model.layers.49.self_attn.rotary_emb.inv_freq": "pytorch_model-00014-of-00017.bin",
|
457 |
+
"model.layers.49.self_attn.v_proj.weight": "pytorch_model-00014-of-00017.bin",
|
458 |
+
"model.layers.5.input_layernorm.weight": "pytorch_model-00002-of-00017.bin",
|
459 |
+
"model.layers.5.mlp.down_proj.weight": "pytorch_model-00002-of-00017.bin",
|
460 |
+
"model.layers.5.mlp.gate_proj.weight": "pytorch_model-00002-of-00017.bin",
|
461 |
+
"model.layers.5.mlp.up_proj.weight": "pytorch_model-00002-of-00017.bin",
|
462 |
+
"model.layers.5.post_attention_layernorm.weight": "pytorch_model-00002-of-00017.bin",
|
463 |
+
"model.layers.5.self_attn.k_proj.weight": "pytorch_model-00002-of-00017.bin",
|
464 |
+
"model.layers.5.self_attn.o_proj.weight": "pytorch_model-00002-of-00017.bin",
|
465 |
+
"model.layers.5.self_attn.q_proj.weight": "pytorch_model-00002-of-00017.bin",
|
466 |
+
"model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00017.bin",
|
467 |
+
"model.layers.5.self_attn.v_proj.weight": "pytorch_model-00002-of-00017.bin",
|
468 |
+
"model.layers.50.input_layernorm.weight": "pytorch_model-00015-of-00017.bin",
|
469 |
+
"model.layers.50.mlp.down_proj.weight": "pytorch_model-00015-of-00017.bin",
|
470 |
+
"model.layers.50.mlp.gate_proj.weight": "pytorch_model-00015-of-00017.bin",
|
471 |
+
"model.layers.50.mlp.up_proj.weight": "pytorch_model-00015-of-00017.bin",
|
472 |
+
"model.layers.50.post_attention_layernorm.weight": "pytorch_model-00015-of-00017.bin",
|
473 |
+
"model.layers.50.self_attn.k_proj.weight": "pytorch_model-00014-of-00017.bin",
|
474 |
+
"model.layers.50.self_attn.o_proj.weight": "pytorch_model-00015-of-00017.bin",
|
475 |
+
"model.layers.50.self_attn.q_proj.weight": "pytorch_model-00014-of-00017.bin",
|
476 |
+
"model.layers.50.self_attn.rotary_emb.inv_freq": "pytorch_model-00015-of-00017.bin",
|
477 |
+
"model.layers.50.self_attn.v_proj.weight": "pytorch_model-00014-of-00017.bin",
|
478 |
+
"model.layers.51.input_layernorm.weight": "pytorch_model-00015-of-00017.bin",
|
479 |
+
"model.layers.51.mlp.down_proj.weight": "pytorch_model-00015-of-00017.bin",
|
480 |
+
"model.layers.51.mlp.gate_proj.weight": "pytorch_model-00015-of-00017.bin",
|
481 |
+
"model.layers.51.mlp.up_proj.weight": "pytorch_model-00015-of-00017.bin",
|
482 |
+
"model.layers.51.post_attention_layernorm.weight": "pytorch_model-00015-of-00017.bin",
|
483 |
+
"model.layers.51.self_attn.k_proj.weight": "pytorch_model-00015-of-00017.bin",
|
484 |
+
"model.layers.51.self_attn.o_proj.weight": "pytorch_model-00015-of-00017.bin",
|
485 |
+
"model.layers.51.self_attn.q_proj.weight": "pytorch_model-00015-of-00017.bin",
|
486 |
+
"model.layers.51.self_attn.rotary_emb.inv_freq": "pytorch_model-00015-of-00017.bin",
|
487 |
+
"model.layers.51.self_attn.v_proj.weight": "pytorch_model-00015-of-00017.bin",
|
488 |
+
"model.layers.52.input_layernorm.weight": "pytorch_model-00015-of-00017.bin",
|
489 |
+
"model.layers.52.mlp.down_proj.weight": "pytorch_model-00015-of-00017.bin",
|
490 |
+
"model.layers.52.mlp.gate_proj.weight": "pytorch_model-00015-of-00017.bin",
|
491 |
+
"model.layers.52.mlp.up_proj.weight": "pytorch_model-00015-of-00017.bin",
|
492 |
+
"model.layers.52.post_attention_layernorm.weight": "pytorch_model-00015-of-00017.bin",
|
493 |
+
"model.layers.52.self_attn.k_proj.weight": "pytorch_model-00015-of-00017.bin",
|
494 |
+
"model.layers.52.self_attn.o_proj.weight": "pytorch_model-00015-of-00017.bin",
|
495 |
+
"model.layers.52.self_attn.q_proj.weight": "pytorch_model-00015-of-00017.bin",
|
496 |
+
"model.layers.52.self_attn.rotary_emb.inv_freq": "pytorch_model-00015-of-00017.bin",
|
497 |
+
"model.layers.52.self_attn.v_proj.weight": "pytorch_model-00015-of-00017.bin",
|
498 |
+
"model.layers.53.input_layernorm.weight": "pytorch_model-00016-of-00017.bin",
|
499 |
+
"model.layers.53.mlp.down_proj.weight": "pytorch_model-00015-of-00017.bin",
|
500 |
+
"model.layers.53.mlp.gate_proj.weight": "pytorch_model-00015-of-00017.bin",
|
501 |
+
"model.layers.53.mlp.up_proj.weight": "pytorch_model-00016-of-00017.bin",
|
502 |
+
"model.layers.53.post_attention_layernorm.weight": "pytorch_model-00016-of-00017.bin",
|
503 |
+
"model.layers.53.self_attn.k_proj.weight": "pytorch_model-00015-of-00017.bin",
|
504 |
+
"model.layers.53.self_attn.o_proj.weight": "pytorch_model-00015-of-00017.bin",
|
505 |
+
"model.layers.53.self_attn.q_proj.weight": "pytorch_model-00015-of-00017.bin",
|
506 |
+
"model.layers.53.self_attn.rotary_emb.inv_freq": "pytorch_model-00015-of-00017.bin",
|
507 |
+
"model.layers.53.self_attn.v_proj.weight": "pytorch_model-00015-of-00017.bin",
|
508 |
+
"model.layers.54.input_layernorm.weight": "pytorch_model-00016-of-00017.bin",
|
509 |
+
"model.layers.54.mlp.down_proj.weight": "pytorch_model-00016-of-00017.bin",
|
510 |
+
"model.layers.54.mlp.gate_proj.weight": "pytorch_model-00016-of-00017.bin",
|
511 |
+
"model.layers.54.mlp.up_proj.weight": "pytorch_model-00016-of-00017.bin",
|
512 |
+
"model.layers.54.post_attention_layernorm.weight": "pytorch_model-00016-of-00017.bin",
|
513 |
+
"model.layers.54.self_attn.k_proj.weight": "pytorch_model-00016-of-00017.bin",
|
514 |
+
"model.layers.54.self_attn.o_proj.weight": "pytorch_model-00016-of-00017.bin",
|
515 |
+
"model.layers.54.self_attn.q_proj.weight": "pytorch_model-00016-of-00017.bin",
|
516 |
+
"model.layers.54.self_attn.rotary_emb.inv_freq": "pytorch_model-00016-of-00017.bin",
|
517 |
+
"model.layers.54.self_attn.v_proj.weight": "pytorch_model-00016-of-00017.bin",
|
518 |
+
"model.layers.55.input_layernorm.weight": "pytorch_model-00016-of-00017.bin",
|
519 |
+
"model.layers.55.mlp.down_proj.weight": "pytorch_model-00016-of-00017.bin",
|
520 |
+
"model.layers.55.mlp.gate_proj.weight": "pytorch_model-00016-of-00017.bin",
|
521 |
+
"model.layers.55.mlp.up_proj.weight": "pytorch_model-00016-of-00017.bin",
|
522 |
+
"model.layers.55.post_attention_layernorm.weight": "pytorch_model-00016-of-00017.bin",
|
523 |
+
"model.layers.55.self_attn.k_proj.weight": "pytorch_model-00016-of-00017.bin",
|
524 |
+
"model.layers.55.self_attn.o_proj.weight": "pytorch_model-00016-of-00017.bin",
|
525 |
+
"model.layers.55.self_attn.q_proj.weight": "pytorch_model-00016-of-00017.bin",
|
526 |
+
"model.layers.55.self_attn.rotary_emb.inv_freq": "pytorch_model-00016-of-00017.bin",
|
527 |
+
"model.layers.55.self_attn.v_proj.weight": "pytorch_model-00016-of-00017.bin",
|
528 |
+
"model.layers.56.input_layernorm.weight": "pytorch_model-00016-of-00017.bin",
|
529 |
+
"model.layers.56.mlp.down_proj.weight": "pytorch_model-00016-of-00017.bin",
|
530 |
+
"model.layers.56.mlp.gate_proj.weight": "pytorch_model-00016-of-00017.bin",
|
531 |
+
"model.layers.56.mlp.up_proj.weight": "pytorch_model-00016-of-00017.bin",
|
532 |
+
"model.layers.56.post_attention_layernorm.weight": "pytorch_model-00016-of-00017.bin",
|
533 |
+
"model.layers.56.self_attn.k_proj.weight": "pytorch_model-00016-of-00017.bin",
|
534 |
+
"model.layers.56.self_attn.o_proj.weight": "pytorch_model-00016-of-00017.bin",
|
535 |
+
"model.layers.56.self_attn.q_proj.weight": "pytorch_model-00016-of-00017.bin",
|
536 |
+
"model.layers.56.self_attn.rotary_emb.inv_freq": "pytorch_model-00016-of-00017.bin",
|
537 |
+
"model.layers.56.self_attn.v_proj.weight": "pytorch_model-00016-of-00017.bin",
|
538 |
+
"model.layers.57.input_layernorm.weight": "pytorch_model-00017-of-00017.bin",
|
539 |
+
"model.layers.57.mlp.down_proj.weight": "pytorch_model-00017-of-00017.bin",
|
540 |
+
"model.layers.57.mlp.gate_proj.weight": "pytorch_model-00017-of-00017.bin",
|
541 |
+
"model.layers.57.mlp.up_proj.weight": "pytorch_model-00017-of-00017.bin",
|
542 |
+
"model.layers.57.post_attention_layernorm.weight": "pytorch_model-00017-of-00017.bin",
|
543 |
+
"model.layers.57.self_attn.k_proj.weight": "pytorch_model-00016-of-00017.bin",
|
544 |
+
"model.layers.57.self_attn.o_proj.weight": "pytorch_model-00016-of-00017.bin",
|
545 |
+
"model.layers.57.self_attn.q_proj.weight": "pytorch_model-00016-of-00017.bin",
|
546 |
+
"model.layers.57.self_attn.rotary_emb.inv_freq": "pytorch_model-00016-of-00017.bin",
|
547 |
+
"model.layers.57.self_attn.v_proj.weight": "pytorch_model-00016-of-00017.bin",
|
548 |
+
"model.layers.58.input_layernorm.weight": "pytorch_model-00017-of-00017.bin",
|
549 |
+
"model.layers.58.mlp.down_proj.weight": "pytorch_model-00017-of-00017.bin",
|
550 |
+
"model.layers.58.mlp.gate_proj.weight": "pytorch_model-00017-of-00017.bin",
|
551 |
+
"model.layers.58.mlp.up_proj.weight": "pytorch_model-00017-of-00017.bin",
|
552 |
+
"model.layers.58.post_attention_layernorm.weight": "pytorch_model-00017-of-00017.bin",
|
553 |
+
"model.layers.58.self_attn.k_proj.weight": "pytorch_model-00017-of-00017.bin",
|
554 |
+
"model.layers.58.self_attn.o_proj.weight": "pytorch_model-00017-of-00017.bin",
|
555 |
+
"model.layers.58.self_attn.q_proj.weight": "pytorch_model-00017-of-00017.bin",
|
556 |
+
"model.layers.58.self_attn.rotary_emb.inv_freq": "pytorch_model-00017-of-00017.bin",
|
557 |
+
"model.layers.58.self_attn.v_proj.weight": "pytorch_model-00017-of-00017.bin",
|
558 |
+
"model.layers.59.input_layernorm.weight": "pytorch_model-00017-of-00017.bin",
|
559 |
+
"model.layers.59.mlp.down_proj.weight": "pytorch_model-00017-of-00017.bin",
|
560 |
+
"model.layers.59.mlp.gate_proj.weight": "pytorch_model-00017-of-00017.bin",
|
561 |
+
"model.layers.59.mlp.up_proj.weight": "pytorch_model-00017-of-00017.bin",
|
562 |
+
"model.layers.59.post_attention_layernorm.weight": "pytorch_model-00017-of-00017.bin",
|
563 |
+
"model.layers.59.self_attn.k_proj.weight": "pytorch_model-00017-of-00017.bin",
|
564 |
+
"model.layers.59.self_attn.o_proj.weight": "pytorch_model-00017-of-00017.bin",
|
565 |
+
"model.layers.59.self_attn.q_proj.weight": "pytorch_model-00017-of-00017.bin",
|
566 |
+
"model.layers.59.self_attn.rotary_emb.inv_freq": "pytorch_model-00017-of-00017.bin",
|
567 |
+
"model.layers.59.self_attn.v_proj.weight": "pytorch_model-00017-of-00017.bin",
|
568 |
+
"model.layers.6.input_layernorm.weight": "pytorch_model-00002-of-00017.bin",
|
569 |
+
"model.layers.6.mlp.down_proj.weight": "pytorch_model-00002-of-00017.bin",
|
570 |
+
"model.layers.6.mlp.gate_proj.weight": "pytorch_model-00002-of-00017.bin",
|
571 |
+
"model.layers.6.mlp.up_proj.weight": "pytorch_model-00002-of-00017.bin",
|
572 |
+
"model.layers.6.post_attention_layernorm.weight": "pytorch_model-00002-of-00017.bin",
|
573 |
+
"model.layers.6.self_attn.k_proj.weight": "pytorch_model-00002-of-00017.bin",
|
574 |
+
"model.layers.6.self_attn.o_proj.weight": "pytorch_model-00002-of-00017.bin",
|
575 |
+
"model.layers.6.self_attn.q_proj.weight": "pytorch_model-00002-of-00017.bin",
|
576 |
+
"model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00017.bin",
|
577 |
+
"model.layers.6.self_attn.v_proj.weight": "pytorch_model-00002-of-00017.bin",
|
578 |
+
"model.layers.7.input_layernorm.weight": "pytorch_model-00003-of-00017.bin",
|
579 |
+
"model.layers.7.mlp.down_proj.weight": "pytorch_model-00003-of-00017.bin",
|
580 |
+
"model.layers.7.mlp.gate_proj.weight": "pytorch_model-00003-of-00017.bin",
|
581 |
+
"model.layers.7.mlp.up_proj.weight": "pytorch_model-00003-of-00017.bin",
|
582 |
+
"model.layers.7.post_attention_layernorm.weight": "pytorch_model-00003-of-00017.bin",
|
583 |
+
"model.layers.7.self_attn.k_proj.weight": "pytorch_model-00003-of-00017.bin",
|
584 |
+
"model.layers.7.self_attn.o_proj.weight": "pytorch_model-00003-of-00017.bin",
|
585 |
+
"model.layers.7.self_attn.q_proj.weight": "pytorch_model-00003-of-00017.bin",
|
586 |
+
"model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00017.bin",
|
587 |
+
"model.layers.7.self_attn.v_proj.weight": "pytorch_model-00003-of-00017.bin",
|
588 |
+
"model.layers.8.input_layernorm.weight": "pytorch_model-00003-of-00017.bin",
|
589 |
+
"model.layers.8.mlp.down_proj.weight": "pytorch_model-00003-of-00017.bin",
|
590 |
+
"model.layers.8.mlp.gate_proj.weight": "pytorch_model-00003-of-00017.bin",
|
591 |
+
"model.layers.8.mlp.up_proj.weight": "pytorch_model-00003-of-00017.bin",
|
592 |
+
"model.layers.8.post_attention_layernorm.weight": "pytorch_model-00003-of-00017.bin",
|
593 |
+
"model.layers.8.self_attn.k_proj.weight": "pytorch_model-00003-of-00017.bin",
|
594 |
+
"model.layers.8.self_attn.o_proj.weight": "pytorch_model-00003-of-00017.bin",
|
595 |
+
"model.layers.8.self_attn.q_proj.weight": "pytorch_model-00003-of-00017.bin",
|
596 |
+
"model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00017.bin",
|
597 |
+
"model.layers.8.self_attn.v_proj.weight": "pytorch_model-00003-of-00017.bin",
|
598 |
+
"model.layers.9.input_layernorm.weight": "pytorch_model-00003-of-00017.bin",
|
599 |
+
"model.layers.9.mlp.down_proj.weight": "pytorch_model-00003-of-00017.bin",
|
600 |
+
"model.layers.9.mlp.gate_proj.weight": "pytorch_model-00003-of-00017.bin",
|
601 |
+
"model.layers.9.mlp.up_proj.weight": "pytorch_model-00003-of-00017.bin",
|
602 |
+
"model.layers.9.post_attention_layernorm.weight": "pytorch_model-00003-of-00017.bin",
|
603 |
+
"model.layers.9.self_attn.k_proj.weight": "pytorch_model-00003-of-00017.bin",
|
604 |
+
"model.layers.9.self_attn.o_proj.weight": "pytorch_model-00003-of-00017.bin",
|
605 |
+
"model.layers.9.self_attn.q_proj.weight": "pytorch_model-00003-of-00017.bin",
|
606 |
+
"model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00017.bin",
|
607 |
+
"model.layers.9.self_attn.v_proj.weight": "pytorch_model-00003-of-00017.bin",
|
608 |
+
"model.norm.weight": "pytorch_model-00017-of-00017.bin"
|
609 |
+
}
|
610 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "</s>",
|
3 |
+
"eos_token": "</s>",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"unk_token": "</s>"
|
6 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
+
size 499723
|
tokenizer_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"bos_token": {
|
5 |
+
"__type": "AddedToken",
|
6 |
+
"content": "<s>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": true,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"clean_up_tokenization_spaces": false,
|
13 |
+
"eos_token": {
|
14 |
+
"__type": "AddedToken",
|
15 |
+
"content": "</s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": true,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false
|
20 |
+
},
|
21 |
+
"model_max_length": 2048,
|
22 |
+
"pad_token": null,
|
23 |
+
"padding_side": "right",
|
24 |
+
"sp_model_kwargs": {},
|
25 |
+
"tokenizer_class": "LlamaTokenizer",
|
26 |
+
"unk_token": {
|
27 |
+
"__type": "AddedToken",
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false
|
33 |
+
}
|
34 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,3874 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 2.9965075669383,
|
5 |
+
"global_step": 1287,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.0,
|
12 |
+
"learning_rate": 2e-05,
|
13 |
+
"loss": 0.905,
|
14 |
+
"step": 2
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.01,
|
18 |
+
"learning_rate": 1.9999880457421163e-05,
|
19 |
+
"loss": 0.6497,
|
20 |
+
"step": 4
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.01,
|
24 |
+
"learning_rate": 1.9999521832542736e-05,
|
25 |
+
"loss": 0.6121,
|
26 |
+
"step": 6
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 0.02,
|
30 |
+
"learning_rate": 1.9998924133938902e-05,
|
31 |
+
"loss": 0.7236,
|
32 |
+
"step": 8
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 0.02,
|
36 |
+
"learning_rate": 1.9998087375899756e-05,
|
37 |
+
"loss": 0.7515,
|
38 |
+
"step": 10
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.03,
|
42 |
+
"learning_rate": 1.9997011578430938e-05,
|
43 |
+
"loss": 0.7073,
|
44 |
+
"step": 12
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.03,
|
48 |
+
"learning_rate": 1.9995696767253165e-05,
|
49 |
+
"loss": 0.6146,
|
50 |
+
"step": 14
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 0.04,
|
54 |
+
"learning_rate": 1.9994142973801627e-05,
|
55 |
+
"loss": 0.5923,
|
56 |
+
"step": 16
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 0.04,
|
60 |
+
"learning_rate": 1.9992350235225215e-05,
|
61 |
+
"loss": 0.5629,
|
62 |
+
"step": 18
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 0.05,
|
66 |
+
"learning_rate": 1.999031859438565e-05,
|
67 |
+
"loss": 0.5383,
|
68 |
+
"step": 20
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 0.05,
|
72 |
+
"learning_rate": 1.9988048099856443e-05,
|
73 |
+
"loss": 0.516,
|
74 |
+
"step": 22
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 0.06,
|
78 |
+
"learning_rate": 1.9985538805921757e-05,
|
79 |
+
"loss": 0.5035,
|
80 |
+
"step": 24
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.06,
|
84 |
+
"learning_rate": 1.998279077257508e-05,
|
85 |
+
"loss": 0.5244,
|
86 |
+
"step": 26
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.07,
|
90 |
+
"learning_rate": 1.9979804065517808e-05,
|
91 |
+
"loss": 0.486,
|
92 |
+
"step": 28
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 0.07,
|
96 |
+
"learning_rate": 1.9976578756157684e-05,
|
97 |
+
"loss": 0.4945,
|
98 |
+
"step": 30
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 0.07,
|
102 |
+
"learning_rate": 1.9973114921607055e-05,
|
103 |
+
"loss": 0.4966,
|
104 |
+
"step": 32
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 0.08,
|
108 |
+
"learning_rate": 1.9969412644681077e-05,
|
109 |
+
"loss": 0.4935,
|
110 |
+
"step": 34
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"epoch": 0.08,
|
114 |
+
"learning_rate": 1.9965472013895685e-05,
|
115 |
+
"loss": 0.4739,
|
116 |
+
"step": 36
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 0.09,
|
120 |
+
"learning_rate": 1.996129312346552e-05,
|
121 |
+
"loss": 0.4913,
|
122 |
+
"step": 38
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.09,
|
126 |
+
"learning_rate": 1.9956876073301645e-05,
|
127 |
+
"loss": 0.4641,
|
128 |
+
"step": 40
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.1,
|
132 |
+
"learning_rate": 1.9952220969009175e-05,
|
133 |
+
"loss": 0.4691,
|
134 |
+
"step": 42
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 0.1,
|
138 |
+
"learning_rate": 1.9947327921884746e-05,
|
139 |
+
"loss": 0.4666,
|
140 |
+
"step": 44
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 0.11,
|
144 |
+
"learning_rate": 1.994219704891385e-05,
|
145 |
+
"loss": 0.4501,
|
146 |
+
"step": 46
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"epoch": 0.11,
|
150 |
+
"learning_rate": 1.9936828472768043e-05,
|
151 |
+
"loss": 0.4558,
|
152 |
+
"step": 48
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 0.12,
|
156 |
+
"learning_rate": 1.9931222321802016e-05,
|
157 |
+
"loss": 0.4712,
|
158 |
+
"step": 50
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 0.12,
|
162 |
+
"learning_rate": 1.9925378730050518e-05,
|
163 |
+
"loss": 0.4661,
|
164 |
+
"step": 52
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.13,
|
168 |
+
"learning_rate": 1.9919297837225152e-05,
|
169 |
+
"loss": 0.4735,
|
170 |
+
"step": 54
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.13,
|
174 |
+
"learning_rate": 1.9912979788711042e-05,
|
175 |
+
"loss": 0.4526,
|
176 |
+
"step": 56
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 0.14,
|
180 |
+
"learning_rate": 1.990642473556335e-05,
|
181 |
+
"loss": 0.4453,
|
182 |
+
"step": 58
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 0.14,
|
186 |
+
"learning_rate": 1.9899632834503662e-05,
|
187 |
+
"loss": 0.4713,
|
188 |
+
"step": 60
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 0.14,
|
192 |
+
"learning_rate": 1.989260424791626e-05,
|
193 |
+
"loss": 0.4622,
|
194 |
+
"step": 62
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 0.15,
|
198 |
+
"learning_rate": 1.9885339143844217e-05,
|
199 |
+
"loss": 0.4585,
|
200 |
+
"step": 64
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 0.15,
|
204 |
+
"learning_rate": 1.987783769598538e-05,
|
205 |
+
"loss": 0.4576,
|
206 |
+
"step": 66
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.16,
|
210 |
+
"learning_rate": 1.9870100083688242e-05,
|
211 |
+
"loss": 0.4353,
|
212 |
+
"step": 68
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.16,
|
216 |
+
"learning_rate": 1.9862126491947624e-05,
|
217 |
+
"loss": 0.4509,
|
218 |
+
"step": 70
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 0.17,
|
222 |
+
"learning_rate": 1.985391711140027e-05,
|
223 |
+
"loss": 0.4402,
|
224 |
+
"step": 72
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 0.17,
|
228 |
+
"learning_rate": 1.9845472138320282e-05,
|
229 |
+
"loss": 0.437,
|
230 |
+
"step": 74
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"epoch": 0.18,
|
234 |
+
"learning_rate": 1.9836791774614437e-05,
|
235 |
+
"loss": 0.4613,
|
236 |
+
"step": 76
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 0.18,
|
240 |
+
"learning_rate": 1.982787622781735e-05,
|
241 |
+
"loss": 0.4567,
|
242 |
+
"step": 78
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 0.19,
|
246 |
+
"learning_rate": 1.9818725711086506e-05,
|
247 |
+
"loss": 0.4541,
|
248 |
+
"step": 80
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.19,
|
252 |
+
"learning_rate": 1.980934044319718e-05,
|
253 |
+
"loss": 0.4398,
|
254 |
+
"step": 82
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.2,
|
258 |
+
"learning_rate": 1.9799720648537197e-05,
|
259 |
+
"loss": 0.4283,
|
260 |
+
"step": 84
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 0.2,
|
264 |
+
"learning_rate": 1.978986655710157e-05,
|
265 |
+
"loss": 0.4443,
|
266 |
+
"step": 86
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"epoch": 0.2,
|
270 |
+
"learning_rate": 1.9779778404487e-05,
|
271 |
+
"loss": 0.4457,
|
272 |
+
"step": 88
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"epoch": 0.21,
|
276 |
+
"learning_rate": 1.9769456431886244e-05,
|
277 |
+
"loss": 0.4326,
|
278 |
+
"step": 90
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"epoch": 0.21,
|
282 |
+
"learning_rate": 1.9758900886082343e-05,
|
283 |
+
"loss": 0.4557,
|
284 |
+
"step": 92
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 0.22,
|
288 |
+
"learning_rate": 1.9748112019442734e-05,
|
289 |
+
"loss": 0.4402,
|
290 |
+
"step": 94
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 0.22,
|
294 |
+
"learning_rate": 1.9737090089913205e-05,
|
295 |
+
"loss": 0.465,
|
296 |
+
"step": 96
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.23,
|
300 |
+
"learning_rate": 1.9725835361011726e-05,
|
301 |
+
"loss": 0.4387,
|
302 |
+
"step": 98
|
303 |
+
},
|
304 |
+
{
|
305 |
+
"epoch": 0.23,
|
306 |
+
"learning_rate": 1.971434810182217e-05,
|
307 |
+
"loss": 0.4479,
|
308 |
+
"step": 100
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"epoch": 0.24,
|
312 |
+
"learning_rate": 1.9702628586987846e-05,
|
313 |
+
"loss": 0.4344,
|
314 |
+
"step": 102
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"epoch": 0.24,
|
318 |
+
"learning_rate": 1.9690677096704964e-05,
|
319 |
+
"loss": 0.4302,
|
320 |
+
"step": 104
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"epoch": 0.25,
|
324 |
+
"learning_rate": 1.9678493916715914e-05,
|
325 |
+
"loss": 0.4331,
|
326 |
+
"step": 106
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"epoch": 0.25,
|
330 |
+
"learning_rate": 1.966607933830245e-05,
|
331 |
+
"loss": 0.4224,
|
332 |
+
"step": 108
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 0.26,
|
336 |
+
"learning_rate": 1.9653433658278717e-05,
|
337 |
+
"loss": 0.4225,
|
338 |
+
"step": 110
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.26,
|
342 |
+
"learning_rate": 1.9640557178984152e-05,
|
343 |
+
"loss": 0.4177,
|
344 |
+
"step": 112
|
345 |
+
},
|
346 |
+
{
|
347 |
+
"epoch": 0.27,
|
348 |
+
"learning_rate": 1.9627450208276265e-05,
|
349 |
+
"loss": 0.4546,
|
350 |
+
"step": 114
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"epoch": 0.27,
|
354 |
+
"learning_rate": 1.9614113059523273e-05,
|
355 |
+
"loss": 0.4257,
|
356 |
+
"step": 116
|
357 |
+
},
|
358 |
+
{
|
359 |
+
"epoch": 0.27,
|
360 |
+
"learning_rate": 1.9600546051596604e-05,
|
361 |
+
"loss": 0.4453,
|
362 |
+
"step": 118
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"epoch": 0.28,
|
366 |
+
"learning_rate": 1.9586749508863284e-05,
|
367 |
+
"loss": 0.458,
|
368 |
+
"step": 120
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"epoch": 0.28,
|
372 |
+
"learning_rate": 1.9572723761178168e-05,
|
373 |
+
"loss": 0.4287,
|
374 |
+
"step": 122
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 0.29,
|
378 |
+
"learning_rate": 1.955846914387607e-05,
|
379 |
+
"loss": 0.4581,
|
380 |
+
"step": 124
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.29,
|
384 |
+
"learning_rate": 1.954398599776373e-05,
|
385 |
+
"loss": 0.4343,
|
386 |
+
"step": 126
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"epoch": 0.3,
|
390 |
+
"learning_rate": 1.952927466911168e-05,
|
391 |
+
"loss": 0.4431,
|
392 |
+
"step": 128
|
393 |
+
},
|
394 |
+
{
|
395 |
+
"epoch": 0.3,
|
396 |
+
"learning_rate": 1.9514335509645948e-05,
|
397 |
+
"loss": 0.4332,
|
398 |
+
"step": 130
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"epoch": 0.31,
|
402 |
+
"learning_rate": 1.9499168876539666e-05,
|
403 |
+
"loss": 0.4315,
|
404 |
+
"step": 132
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"epoch": 0.31,
|
408 |
+
"learning_rate": 1.9483775132404517e-05,
|
409 |
+
"loss": 0.4403,
|
410 |
+
"step": 134
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"epoch": 0.32,
|
414 |
+
"learning_rate": 1.946815464528208e-05,
|
415 |
+
"loss": 0.4618,
|
416 |
+
"step": 136
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 0.32,
|
420 |
+
"learning_rate": 1.9452307788635015e-05,
|
421 |
+
"loss": 0.4292,
|
422 |
+
"step": 138
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.33,
|
426 |
+
"learning_rate": 1.9436234941338145e-05,
|
427 |
+
"loss": 0.4333,
|
428 |
+
"step": 140
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"epoch": 0.33,
|
432 |
+
"learning_rate": 1.9419936487669396e-05,
|
433 |
+
"loss": 0.4557,
|
434 |
+
"step": 142
|
435 |
+
},
|
436 |
+
{
|
437 |
+
"epoch": 0.34,
|
438 |
+
"learning_rate": 1.94034128173006e-05,
|
439 |
+
"loss": 0.4575,
|
440 |
+
"step": 144
|
441 |
+
},
|
442 |
+
{
|
443 |
+
"epoch": 0.34,
|
444 |
+
"learning_rate": 1.938666432528819e-05,
|
445 |
+
"loss": 0.4012,
|
446 |
+
"step": 146
|
447 |
+
},
|
448 |
+
{
|
449 |
+
"epoch": 0.34,
|
450 |
+
"learning_rate": 1.9369691412063755e-05,
|
451 |
+
"loss": 0.4579,
|
452 |
+
"step": 148
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"epoch": 0.35,
|
456 |
+
"learning_rate": 1.9352494483424456e-05,
|
457 |
+
"loss": 0.4337,
|
458 |
+
"step": 150
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 0.35,
|
462 |
+
"learning_rate": 1.9335073950523335e-05,
|
463 |
+
"loss": 0.4142,
|
464 |
+
"step": 152
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.36,
|
468 |
+
"learning_rate": 1.9317430229859474e-05,
|
469 |
+
"loss": 0.4545,
|
470 |
+
"step": 154
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"epoch": 0.36,
|
474 |
+
"learning_rate": 1.929956374326805e-05,
|
475 |
+
"loss": 0.4679,
|
476 |
+
"step": 156
|
477 |
+
},
|
478 |
+
{
|
479 |
+
"epoch": 0.37,
|
480 |
+
"learning_rate": 1.928147491791024e-05,
|
481 |
+
"loss": 0.4178,
|
482 |
+
"step": 158
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"epoch": 0.37,
|
486 |
+
"learning_rate": 1.9263164186263003e-05,
|
487 |
+
"loss": 0.4474,
|
488 |
+
"step": 160
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"epoch": 0.38,
|
492 |
+
"learning_rate": 1.9244631986108768e-05,
|
493 |
+
"loss": 0.4237,
|
494 |
+
"step": 162
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 0.38,
|
498 |
+
"learning_rate": 1.922587876052492e-05,
|
499 |
+
"loss": 0.4456,
|
500 |
+
"step": 164
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 0.39,
|
504 |
+
"learning_rate": 1.920690495787326e-05,
|
505 |
+
"loss": 0.412,
|
506 |
+
"step": 166
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.39,
|
510 |
+
"learning_rate": 1.918771103178924e-05,
|
511 |
+
"loss": 0.4279,
|
512 |
+
"step": 168
|
513 |
+
},
|
514 |
+
{
|
515 |
+
"epoch": 0.4,
|
516 |
+
"learning_rate": 1.916829744117115e-05,
|
517 |
+
"loss": 0.413,
|
518 |
+
"step": 170
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"epoch": 0.4,
|
522 |
+
"learning_rate": 1.9148664650169128e-05,
|
523 |
+
"loss": 0.4508,
|
524 |
+
"step": 172
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"epoch": 0.41,
|
528 |
+
"learning_rate": 1.9128813128174063e-05,
|
529 |
+
"loss": 0.4054,
|
530 |
+
"step": 174
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"epoch": 0.41,
|
534 |
+
"learning_rate": 1.9108743349806382e-05,
|
535 |
+
"loss": 0.4021,
|
536 |
+
"step": 176
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 0.41,
|
540 |
+
"learning_rate": 1.90884557949047e-05,
|
541 |
+
"loss": 0.4392,
|
542 |
+
"step": 178
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 0.42,
|
546 |
+
"learning_rate": 1.9067950948514343e-05,
|
547 |
+
"loss": 0.4414,
|
548 |
+
"step": 180
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.42,
|
552 |
+
"learning_rate": 1.904722930087575e-05,
|
553 |
+
"loss": 0.4327,
|
554 |
+
"step": 182
|
555 |
+
},
|
556 |
+
{
|
557 |
+
"epoch": 0.43,
|
558 |
+
"learning_rate": 1.9026291347412765e-05,
|
559 |
+
"loss": 0.4081,
|
560 |
+
"step": 184
|
561 |
+
},
|
562 |
+
{
|
563 |
+
"epoch": 0.43,
|
564 |
+
"learning_rate": 1.900513758872078e-05,
|
565 |
+
"loss": 0.4432,
|
566 |
+
"step": 186
|
567 |
+
},
|
568 |
+
{
|
569 |
+
"epoch": 0.44,
|
570 |
+
"learning_rate": 1.8983768530554765e-05,
|
571 |
+
"loss": 0.4355,
|
572 |
+
"step": 188
|
573 |
+
},
|
574 |
+
{
|
575 |
+
"epoch": 0.44,
|
576 |
+
"learning_rate": 1.8962184683817182e-05,
|
577 |
+
"loss": 0.4292,
|
578 |
+
"step": 190
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"epoch": 0.45,
|
582 |
+
"learning_rate": 1.8940386564545773e-05,
|
583 |
+
"loss": 0.4182,
|
584 |
+
"step": 192
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 0.45,
|
588 |
+
"learning_rate": 1.891837469390122e-05,
|
589 |
+
"loss": 0.4402,
|
590 |
+
"step": 194
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.46,
|
594 |
+
"learning_rate": 1.8896149598154675e-05,
|
595 |
+
"loss": 0.4377,
|
596 |
+
"step": 196
|
597 |
+
},
|
598 |
+
{
|
599 |
+
"epoch": 0.46,
|
600 |
+
"learning_rate": 1.887371180867519e-05,
|
601 |
+
"loss": 0.4236,
|
602 |
+
"step": 198
|
603 |
+
},
|
604 |
+
{
|
605 |
+
"epoch": 0.47,
|
606 |
+
"learning_rate": 1.8851061861917013e-05,
|
607 |
+
"loss": 0.4399,
|
608 |
+
"step": 200
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"epoch": 0.47,
|
612 |
+
"learning_rate": 1.8828200299406747e-05,
|
613 |
+
"loss": 0.4285,
|
614 |
+
"step": 202
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"epoch": 0.47,
|
618 |
+
"learning_rate": 1.8805127667730426e-05,
|
619 |
+
"loss": 0.4465,
|
620 |
+
"step": 204
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 0.48,
|
624 |
+
"learning_rate": 1.878184451852042e-05,
|
625 |
+
"loss": 0.4264,
|
626 |
+
"step": 206
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 0.48,
|
630 |
+
"learning_rate": 1.8758351408442278e-05,
|
631 |
+
"loss": 0.4196,
|
632 |
+
"step": 208
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.49,
|
636 |
+
"learning_rate": 1.8734648899181388e-05,
|
637 |
+
"loss": 0.4104,
|
638 |
+
"step": 210
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"epoch": 0.49,
|
642 |
+
"learning_rate": 1.871073755742957e-05,
|
643 |
+
"loss": 0.4188,
|
644 |
+
"step": 212
|
645 |
+
},
|
646 |
+
{
|
647 |
+
"epoch": 0.5,
|
648 |
+
"learning_rate": 1.868661795487151e-05,
|
649 |
+
"loss": 0.4418,
|
650 |
+
"step": 214
|
651 |
+
},
|
652 |
+
{
|
653 |
+
"epoch": 0.5,
|
654 |
+
"learning_rate": 1.8662290668171107e-05,
|
655 |
+
"loss": 0.4183,
|
656 |
+
"step": 216
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"epoch": 0.51,
|
660 |
+
"learning_rate": 1.8637756278957683e-05,
|
661 |
+
"loss": 0.4076,
|
662 |
+
"step": 218
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"epoch": 0.51,
|
666 |
+
"learning_rate": 1.8613015373812066e-05,
|
667 |
+
"loss": 0.4105,
|
668 |
+
"step": 220
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 0.52,
|
672 |
+
"learning_rate": 1.8588068544252572e-05,
|
673 |
+
"loss": 0.4478,
|
674 |
+
"step": 222
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.52,
|
678 |
+
"learning_rate": 1.8562916386720883e-05,
|
679 |
+
"loss": 0.4312,
|
680 |
+
"step": 224
|
681 |
+
},
|
682 |
+
{
|
683 |
+
"epoch": 0.53,
|
684 |
+
"learning_rate": 1.853755950256774e-05,
|
685 |
+
"loss": 0.4044,
|
686 |
+
"step": 226
|
687 |
+
},
|
688 |
+
{
|
689 |
+
"epoch": 0.53,
|
690 |
+
"learning_rate": 1.8511998498038615e-05,
|
691 |
+
"loss": 0.4069,
|
692 |
+
"step": 228
|
693 |
+
},
|
694 |
+
{
|
695 |
+
"epoch": 0.54,
|
696 |
+
"learning_rate": 1.8486233984259186e-05,
|
697 |
+
"loss": 0.4349,
|
698 |
+
"step": 230
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"epoch": 0.54,
|
702 |
+
"learning_rate": 1.8460266577220733e-05,
|
703 |
+
"loss": 0.4039,
|
704 |
+
"step": 232
|
705 |
+
},
|
706 |
+
{
|
707 |
+
"epoch": 0.54,
|
708 |
+
"learning_rate": 1.8434096897765422e-05,
|
709 |
+
"loss": 0.4153,
|
710 |
+
"step": 234
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"epoch": 0.55,
|
714 |
+
"learning_rate": 1.8407725571571448e-05,
|
715 |
+
"loss": 0.4188,
|
716 |
+
"step": 236
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.55,
|
720 |
+
"learning_rate": 1.838115322913807e-05,
|
721 |
+
"loss": 0.4409,
|
722 |
+
"step": 238
|
723 |
+
},
|
724 |
+
{
|
725 |
+
"epoch": 0.56,
|
726 |
+
"learning_rate": 1.835438050577057e-05,
|
727 |
+
"loss": 0.4109,
|
728 |
+
"step": 240
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"epoch": 0.56,
|
732 |
+
"learning_rate": 1.8327408041565013e-05,
|
733 |
+
"loss": 0.4247,
|
734 |
+
"step": 242
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"epoch": 0.57,
|
738 |
+
"learning_rate": 1.8300236481392995e-05,
|
739 |
+
"loss": 0.4451,
|
740 |
+
"step": 244
|
741 |
+
},
|
742 |
+
{
|
743 |
+
"epoch": 0.57,
|
744 |
+
"learning_rate": 1.8272866474886185e-05,
|
745 |
+
"loss": 0.4127,
|
746 |
+
"step": 246
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"epoch": 0.58,
|
750 |
+
"learning_rate": 1.8245298676420814e-05,
|
751 |
+
"loss": 0.4346,
|
752 |
+
"step": 248
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"epoch": 0.58,
|
756 |
+
"learning_rate": 1.8217533745102032e-05,
|
757 |
+
"loss": 0.4078,
|
758 |
+
"step": 250
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.59,
|
762 |
+
"learning_rate": 1.818957234474813e-05,
|
763 |
+
"loss": 0.4034,
|
764 |
+
"step": 252
|
765 |
+
},
|
766 |
+
{
|
767 |
+
"epoch": 0.59,
|
768 |
+
"learning_rate": 1.81614151438747e-05,
|
769 |
+
"loss": 0.4355,
|
770 |
+
"step": 254
|
771 |
+
},
|
772 |
+
{
|
773 |
+
"epoch": 0.6,
|
774 |
+
"learning_rate": 1.8133062815678614e-05,
|
775 |
+
"loss": 0.446,
|
776 |
+
"step": 256
|
777 |
+
},
|
778 |
+
{
|
779 |
+
"epoch": 0.6,
|
780 |
+
"learning_rate": 1.810451603802196e-05,
|
781 |
+
"loss": 0.4329,
|
782 |
+
"step": 258
|
783 |
+
},
|
784 |
+
{
|
785 |
+
"epoch": 0.61,
|
786 |
+
"learning_rate": 1.807577549341582e-05,
|
787 |
+
"loss": 0.4387,
|
788 |
+
"step": 260
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"epoch": 0.61,
|
792 |
+
"learning_rate": 1.8046841869003962e-05,
|
793 |
+
"loss": 0.4001,
|
794 |
+
"step": 262
|
795 |
+
},
|
796 |
+
{
|
797 |
+
"epoch": 0.61,
|
798 |
+
"learning_rate": 1.8017715856546397e-05,
|
799 |
+
"loss": 0.4109,
|
800 |
+
"step": 264
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.62,
|
804 |
+
"learning_rate": 1.7988398152402857e-05,
|
805 |
+
"loss": 0.4156,
|
806 |
+
"step": 266
|
807 |
+
},
|
808 |
+
{
|
809 |
+
"epoch": 0.62,
|
810 |
+
"learning_rate": 1.7958889457516134e-05,
|
811 |
+
"loss": 0.4121,
|
812 |
+
"step": 268
|
813 |
+
},
|
814 |
+
{
|
815 |
+
"epoch": 0.63,
|
816 |
+
"learning_rate": 1.7929190477395318e-05,
|
817 |
+
"loss": 0.4187,
|
818 |
+
"step": 270
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"epoch": 0.63,
|
822 |
+
"learning_rate": 1.7899301922098958e-05,
|
823 |
+
"loss": 0.4072,
|
824 |
+
"step": 272
|
825 |
+
},
|
826 |
+
{
|
827 |
+
"epoch": 0.64,
|
828 |
+
"learning_rate": 1.7869224506218034e-05,
|
829 |
+
"loss": 0.4556,
|
830 |
+
"step": 274
|
831 |
+
},
|
832 |
+
{
|
833 |
+
"epoch": 0.64,
|
834 |
+
"learning_rate": 1.7838958948858923e-05,
|
835 |
+
"loss": 0.4135,
|
836 |
+
"step": 276
|
837 |
+
},
|
838 |
+
{
|
839 |
+
"epoch": 0.65,
|
840 |
+
"learning_rate": 1.7808505973626183e-05,
|
841 |
+
"loss": 0.4384,
|
842 |
+
"step": 278
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 0.65,
|
846 |
+
"learning_rate": 1.777786630860525e-05,
|
847 |
+
"loss": 0.4226,
|
848 |
+
"step": 280
|
849 |
+
},
|
850 |
+
{
|
851 |
+
"epoch": 0.66,
|
852 |
+
"learning_rate": 1.774704068634504e-05,
|
853 |
+
"loss": 0.4362,
|
854 |
+
"step": 282
|
855 |
+
},
|
856 |
+
{
|
857 |
+
"epoch": 0.66,
|
858 |
+
"learning_rate": 1.771602984384043e-05,
|
859 |
+
"loss": 0.4243,
|
860 |
+
"step": 284
|
861 |
+
},
|
862 |
+
{
|
863 |
+
"epoch": 0.67,
|
864 |
+
"learning_rate": 1.7684834522514632e-05,
|
865 |
+
"loss": 0.4622,
|
866 |
+
"step": 286
|
867 |
+
},
|
868 |
+
{
|
869 |
+
"epoch": 0.67,
|
870 |
+
"learning_rate": 1.7653455468201483e-05,
|
871 |
+
"loss": 0.448,
|
872 |
+
"step": 288
|
873 |
+
},
|
874 |
+
{
|
875 |
+
"epoch": 0.68,
|
876 |
+
"learning_rate": 1.7621893431127596e-05,
|
877 |
+
"loss": 0.4385,
|
878 |
+
"step": 290
|
879 |
+
},
|
880 |
+
{
|
881 |
+
"epoch": 0.68,
|
882 |
+
"learning_rate": 1.759014916589443e-05,
|
883 |
+
"loss": 0.4149,
|
884 |
+
"step": 292
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 0.68,
|
888 |
+
"learning_rate": 1.7558223431460254e-05,
|
889 |
+
"loss": 0.4229,
|
890 |
+
"step": 294
|
891 |
+
},
|
892 |
+
{
|
893 |
+
"epoch": 0.69,
|
894 |
+
"learning_rate": 1.7526116991121988e-05,
|
895 |
+
"loss": 0.4115,
|
896 |
+
"step": 296
|
897 |
+
},
|
898 |
+
{
|
899 |
+
"epoch": 0.69,
|
900 |
+
"learning_rate": 1.7493830612496975e-05,
|
901 |
+
"loss": 0.4204,
|
902 |
+
"step": 298
|
903 |
+
},
|
904 |
+
{
|
905 |
+
"epoch": 0.7,
|
906 |
+
"learning_rate": 1.7461365067504602e-05,
|
907 |
+
"loss": 0.4171,
|
908 |
+
"step": 300
|
909 |
+
},
|
910 |
+
{
|
911 |
+
"epoch": 0.7,
|
912 |
+
"learning_rate": 1.7428721132347863e-05,
|
913 |
+
"loss": 0.4161,
|
914 |
+
"step": 302
|
915 |
+
},
|
916 |
+
{
|
917 |
+
"epoch": 0.71,
|
918 |
+
"learning_rate": 1.73958995874948e-05,
|
919 |
+
"loss": 0.4214,
|
920 |
+
"step": 304
|
921 |
+
},
|
922 |
+
{
|
923 |
+
"epoch": 0.71,
|
924 |
+
"learning_rate": 1.7362901217659833e-05,
|
925 |
+
"loss": 0.4175,
|
926 |
+
"step": 306
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 0.72,
|
930 |
+
"learning_rate": 1.7329726811785012e-05,
|
931 |
+
"loss": 0.4105,
|
932 |
+
"step": 308
|
933 |
+
},
|
934 |
+
{
|
935 |
+
"epoch": 0.72,
|
936 |
+
"learning_rate": 1.7296377163021133e-05,
|
937 |
+
"loss": 0.4354,
|
938 |
+
"step": 310
|
939 |
+
},
|
940 |
+
{
|
941 |
+
"epoch": 0.73,
|
942 |
+
"learning_rate": 1.7262853068708807e-05,
|
943 |
+
"loss": 0.4113,
|
944 |
+
"step": 312
|
945 |
+
},
|
946 |
+
{
|
947 |
+
"epoch": 0.73,
|
948 |
+
"learning_rate": 1.7229155330359368e-05,
|
949 |
+
"loss": 0.452,
|
950 |
+
"step": 314
|
951 |
+
},
|
952 |
+
{
|
953 |
+
"epoch": 0.74,
|
954 |
+
"learning_rate": 1.719528475363573e-05,
|
955 |
+
"loss": 0.4154,
|
956 |
+
"step": 316
|
957 |
+
},
|
958 |
+
{
|
959 |
+
"epoch": 0.74,
|
960 |
+
"learning_rate": 1.7161242148333107e-05,
|
961 |
+
"loss": 0.4236,
|
962 |
+
"step": 318
|
963 |
+
},
|
964 |
+
{
|
965 |
+
"epoch": 0.75,
|
966 |
+
"learning_rate": 1.712702832835966e-05,
|
967 |
+
"loss": 0.4146,
|
968 |
+
"step": 320
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 0.75,
|
972 |
+
"learning_rate": 1.7092644111717052e-05,
|
973 |
+
"loss": 0.4183,
|
974 |
+
"step": 322
|
975 |
+
},
|
976 |
+
{
|
977 |
+
"epoch": 0.75,
|
978 |
+
"learning_rate": 1.7058090320480866e-05,
|
979 |
+
"loss": 0.4038,
|
980 |
+
"step": 324
|
981 |
+
},
|
982 |
+
{
|
983 |
+
"epoch": 0.76,
|
984 |
+
"learning_rate": 1.702336778078096e-05,
|
985 |
+
"loss": 0.4135,
|
986 |
+
"step": 326
|
987 |
+
},
|
988 |
+
{
|
989 |
+
"epoch": 0.76,
|
990 |
+
"learning_rate": 1.698847732278173e-05,
|
991 |
+
"loss": 0.408,
|
992 |
+
"step": 328
|
993 |
+
},
|
994 |
+
{
|
995 |
+
"epoch": 0.77,
|
996 |
+
"learning_rate": 1.6953419780662232e-05,
|
997 |
+
"loss": 0.4003,
|
998 |
+
"step": 330
|
999 |
+
},
|
1000 |
+
{
|
1001 |
+
"epoch": 0.77,
|
1002 |
+
"learning_rate": 1.6918195992596274e-05,
|
1003 |
+
"loss": 0.4065,
|
1004 |
+
"step": 332
|
1005 |
+
},
|
1006 |
+
{
|
1007 |
+
"epoch": 0.78,
|
1008 |
+
"learning_rate": 1.6882806800732338e-05,
|
1009 |
+
"loss": 0.4205,
|
1010 |
+
"step": 334
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 0.78,
|
1014 |
+
"learning_rate": 1.6847253051173487e-05,
|
1015 |
+
"loss": 0.4135,
|
1016 |
+
"step": 336
|
1017 |
+
},
|
1018 |
+
{
|
1019 |
+
"epoch": 0.79,
|
1020 |
+
"learning_rate": 1.6811535593957093e-05,
|
1021 |
+
"loss": 0.3965,
|
1022 |
+
"step": 338
|
1023 |
+
},
|
1024 |
+
{
|
1025 |
+
"epoch": 0.79,
|
1026 |
+
"learning_rate": 1.6775655283034548e-05,
|
1027 |
+
"loss": 0.4028,
|
1028 |
+
"step": 340
|
1029 |
+
},
|
1030 |
+
{
|
1031 |
+
"epoch": 0.8,
|
1032 |
+
"learning_rate": 1.6739612976250836e-05,
|
1033 |
+
"loss": 0.4578,
|
1034 |
+
"step": 342
|
1035 |
+
},
|
1036 |
+
{
|
1037 |
+
"epoch": 0.8,
|
1038 |
+
"learning_rate": 1.670340953532401e-05,
|
1039 |
+
"loss": 0.4298,
|
1040 |
+
"step": 344
|
1041 |
+
},
|
1042 |
+
{
|
1043 |
+
"epoch": 0.81,
|
1044 |
+
"learning_rate": 1.6667045825824616e-05,
|
1045 |
+
"loss": 0.4221,
|
1046 |
+
"step": 346
|
1047 |
+
},
|
1048 |
+
{
|
1049 |
+
"epoch": 0.81,
|
1050 |
+
"learning_rate": 1.663052271715497e-05,
|
1051 |
+
"loss": 0.4062,
|
1052 |
+
"step": 348
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 0.81,
|
1056 |
+
"learning_rate": 1.6593841082528394e-05,
|
1057 |
+
"loss": 0.3934,
|
1058 |
+
"step": 350
|
1059 |
+
},
|
1060 |
+
{
|
1061 |
+
"epoch": 0.82,
|
1062 |
+
"learning_rate": 1.6557001798948324e-05,
|
1063 |
+
"loss": 0.4279,
|
1064 |
+
"step": 352
|
1065 |
+
},
|
1066 |
+
{
|
1067 |
+
"epoch": 0.82,
|
1068 |
+
"learning_rate": 1.6520005747187358e-05,
|
1069 |
+
"loss": 0.3993,
|
1070 |
+
"step": 354
|
1071 |
+
},
|
1072 |
+
{
|
1073 |
+
"epoch": 0.83,
|
1074 |
+
"learning_rate": 1.648285381176618e-05,
|
1075 |
+
"loss": 0.4191,
|
1076 |
+
"step": 356
|
1077 |
+
},
|
1078 |
+
{
|
1079 |
+
"epoch": 0.83,
|
1080 |
+
"learning_rate": 1.6445546880932425e-05,
|
1081 |
+
"loss": 0.4198,
|
1082 |
+
"step": 358
|
1083 |
+
},
|
1084 |
+
{
|
1085 |
+
"epoch": 0.84,
|
1086 |
+
"learning_rate": 1.6408085846639435e-05,
|
1087 |
+
"loss": 0.4,
|
1088 |
+
"step": 360
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"epoch": 0.84,
|
1092 |
+
"learning_rate": 1.637047160452494e-05,
|
1093 |
+
"loss": 0.4347,
|
1094 |
+
"step": 362
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 0.85,
|
1098 |
+
"learning_rate": 1.6332705053889643e-05,
|
1099 |
+
"loss": 0.4188,
|
1100 |
+
"step": 364
|
1101 |
+
},
|
1102 |
+
{
|
1103 |
+
"epoch": 0.85,
|
1104 |
+
"learning_rate": 1.6294787097675712e-05,
|
1105 |
+
"loss": 0.4052,
|
1106 |
+
"step": 366
|
1107 |
+
},
|
1108 |
+
{
|
1109 |
+
"epoch": 0.86,
|
1110 |
+
"learning_rate": 1.6256718642445202e-05,
|
1111 |
+
"loss": 0.4214,
|
1112 |
+
"step": 368
|
1113 |
+
},
|
1114 |
+
{
|
1115 |
+
"epoch": 0.86,
|
1116 |
+
"learning_rate": 1.6218500598358376e-05,
|
1117 |
+
"loss": 0.4283,
|
1118 |
+
"step": 370
|
1119 |
+
},
|
1120 |
+
{
|
1121 |
+
"epoch": 0.87,
|
1122 |
+
"learning_rate": 1.6180133879151943e-05,
|
1123 |
+
"loss": 0.4188,
|
1124 |
+
"step": 372
|
1125 |
+
},
|
1126 |
+
{
|
1127 |
+
"epoch": 0.87,
|
1128 |
+
"learning_rate": 1.6141619402117213e-05,
|
1129 |
+
"loss": 0.3989,
|
1130 |
+
"step": 374
|
1131 |
+
},
|
1132 |
+
{
|
1133 |
+
"epoch": 0.88,
|
1134 |
+
"learning_rate": 1.6102958088078172e-05,
|
1135 |
+
"loss": 0.4126,
|
1136 |
+
"step": 376
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 0.88,
|
1140 |
+
"learning_rate": 1.606415086136945e-05,
|
1141 |
+
"loss": 0.4148,
|
1142 |
+
"step": 378
|
1143 |
+
},
|
1144 |
+
{
|
1145 |
+
"epoch": 0.88,
|
1146 |
+
"learning_rate": 1.6025198649814243e-05,
|
1147 |
+
"loss": 0.42,
|
1148 |
+
"step": 380
|
1149 |
+
},
|
1150 |
+
{
|
1151 |
+
"epoch": 0.89,
|
1152 |
+
"learning_rate": 1.5986102384702112e-05,
|
1153 |
+
"loss": 0.4398,
|
1154 |
+
"step": 382
|
1155 |
+
},
|
1156 |
+
{
|
1157 |
+
"epoch": 0.89,
|
1158 |
+
"learning_rate": 1.594686300076673e-05,
|
1159 |
+
"loss": 0.3987,
|
1160 |
+
"step": 384
|
1161 |
+
},
|
1162 |
+
{
|
1163 |
+
"epoch": 0.9,
|
1164 |
+
"learning_rate": 1.590748143616353e-05,
|
1165 |
+
"loss": 0.4313,
|
1166 |
+
"step": 386
|
1167 |
+
},
|
1168 |
+
{
|
1169 |
+
"epoch": 0.9,
|
1170 |
+
"learning_rate": 1.5867958632447263e-05,
|
1171 |
+
"loss": 0.4214,
|
1172 |
+
"step": 388
|
1173 |
+
},
|
1174 |
+
{
|
1175 |
+
"epoch": 0.91,
|
1176 |
+
"learning_rate": 1.582829553454951e-05,
|
1177 |
+
"loss": 0.4066,
|
1178 |
+
"step": 390
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 0.91,
|
1182 |
+
"learning_rate": 1.5788493090756074e-05,
|
1183 |
+
"loss": 0.4064,
|
1184 |
+
"step": 392
|
1185 |
+
},
|
1186 |
+
{
|
1187 |
+
"epoch": 0.92,
|
1188 |
+
"learning_rate": 1.5748552252684303e-05,
|
1189 |
+
"loss": 0.4109,
|
1190 |
+
"step": 394
|
1191 |
+
},
|
1192 |
+
{
|
1193 |
+
"epoch": 0.92,
|
1194 |
+
"learning_rate": 1.5708473975260356e-05,
|
1195 |
+
"loss": 0.4282,
|
1196 |
+
"step": 396
|
1197 |
+
},
|
1198 |
+
{
|
1199 |
+
"epoch": 0.93,
|
1200 |
+
"learning_rate": 1.5668259216696366e-05,
|
1201 |
+
"loss": 0.4358,
|
1202 |
+
"step": 398
|
1203 |
+
},
|
1204 |
+
{
|
1205 |
+
"epoch": 0.93,
|
1206 |
+
"learning_rate": 1.5627908938467516e-05,
|
1207 |
+
"loss": 0.4303,
|
1208 |
+
"step": 400
|
1209 |
+
},
|
1210 |
+
{
|
1211 |
+
"epoch": 0.94,
|
1212 |
+
"learning_rate": 1.558742410528907e-05,
|
1213 |
+
"loss": 0.4082,
|
1214 |
+
"step": 402
|
1215 |
+
},
|
1216 |
+
{
|
1217 |
+
"epoch": 0.94,
|
1218 |
+
"learning_rate": 1.5546805685093308e-05,
|
1219 |
+
"loss": 0.4041,
|
1220 |
+
"step": 404
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 0.95,
|
1224 |
+
"learning_rate": 1.550605464900636e-05,
|
1225 |
+
"loss": 0.4148,
|
1226 |
+
"step": 406
|
1227 |
+
},
|
1228 |
+
{
|
1229 |
+
"epoch": 0.95,
|
1230 |
+
"learning_rate": 1.546517197132502e-05,
|
1231 |
+
"loss": 0.386,
|
1232 |
+
"step": 408
|
1233 |
+
},
|
1234 |
+
{
|
1235 |
+
"epoch": 0.95,
|
1236 |
+
"learning_rate": 1.542415862949343e-05,
|
1237 |
+
"loss": 0.4227,
|
1238 |
+
"step": 410
|
1239 |
+
},
|
1240 |
+
{
|
1241 |
+
"epoch": 0.96,
|
1242 |
+
"learning_rate": 1.5383015604079723e-05,
|
1243 |
+
"loss": 0.4174,
|
1244 |
+
"step": 412
|
1245 |
+
},
|
1246 |
+
{
|
1247 |
+
"epoch": 0.96,
|
1248 |
+
"learning_rate": 1.5341743878752563e-05,
|
1249 |
+
"loss": 0.4302,
|
1250 |
+
"step": 414
|
1251 |
+
},
|
1252 |
+
{
|
1253 |
+
"epoch": 0.97,
|
1254 |
+
"learning_rate": 1.5300344440257657e-05,
|
1255 |
+
"loss": 0.4076,
|
1256 |
+
"step": 416
|
1257 |
+
},
|
1258 |
+
{
|
1259 |
+
"epoch": 0.97,
|
1260 |
+
"learning_rate": 1.5258818278394125e-05,
|
1261 |
+
"loss": 0.4047,
|
1262 |
+
"step": 418
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 0.98,
|
1266 |
+
"learning_rate": 1.5217166385990865e-05,
|
1267 |
+
"loss": 0.4242,
|
1268 |
+
"step": 420
|
1269 |
+
},
|
1270 |
+
{
|
1271 |
+
"epoch": 0.98,
|
1272 |
+
"learning_rate": 1.5175389758882803e-05,
|
1273 |
+
"loss": 0.4032,
|
1274 |
+
"step": 422
|
1275 |
+
},
|
1276 |
+
{
|
1277 |
+
"epoch": 0.99,
|
1278 |
+
"learning_rate": 1.5133489395887089e-05,
|
1279 |
+
"loss": 0.4268,
|
1280 |
+
"step": 424
|
1281 |
+
},
|
1282 |
+
{
|
1283 |
+
"epoch": 0.99,
|
1284 |
+
"learning_rate": 1.509146629877921e-05,
|
1285 |
+
"loss": 0.4132,
|
1286 |
+
"step": 426
|
1287 |
+
},
|
1288 |
+
{
|
1289 |
+
"epoch": 1.0,
|
1290 |
+
"learning_rate": 1.5049321472269043e-05,
|
1291 |
+
"loss": 0.4031,
|
1292 |
+
"step": 428
|
1293 |
+
},
|
1294 |
+
{
|
1295 |
+
"epoch": 1.0,
|
1296 |
+
"learning_rate": 1.5007055923976843e-05,
|
1297 |
+
"loss": 0.3714,
|
1298 |
+
"step": 430
|
1299 |
+
},
|
1300 |
+
{
|
1301 |
+
"epoch": 1.01,
|
1302 |
+
"learning_rate": 1.4964670664409136e-05,
|
1303 |
+
"loss": 0.235,
|
1304 |
+
"step": 432
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 1.01,
|
1308 |
+
"learning_rate": 1.4922166706934566e-05,
|
1309 |
+
"loss": 0.2015,
|
1310 |
+
"step": 434
|
1311 |
+
},
|
1312 |
+
{
|
1313 |
+
"epoch": 1.02,
|
1314 |
+
"learning_rate": 1.4879545067759673e-05,
|
1315 |
+
"loss": 0.2057,
|
1316 |
+
"step": 436
|
1317 |
+
},
|
1318 |
+
{
|
1319 |
+
"epoch": 1.02,
|
1320 |
+
"learning_rate": 1.4836806765904587e-05,
|
1321 |
+
"loss": 0.1876,
|
1322 |
+
"step": 438
|
1323 |
+
},
|
1324 |
+
{
|
1325 |
+
"epoch": 1.02,
|
1326 |
+
"learning_rate": 1.4793952823178676e-05,
|
1327 |
+
"loss": 0.1879,
|
1328 |
+
"step": 440
|
1329 |
+
},
|
1330 |
+
{
|
1331 |
+
"epoch": 1.03,
|
1332 |
+
"learning_rate": 1.4750984264156103e-05,
|
1333 |
+
"loss": 0.1897,
|
1334 |
+
"step": 442
|
1335 |
+
},
|
1336 |
+
{
|
1337 |
+
"epoch": 1.03,
|
1338 |
+
"learning_rate": 1.4707902116151338e-05,
|
1339 |
+
"loss": 0.2166,
|
1340 |
+
"step": 444
|
1341 |
+
},
|
1342 |
+
{
|
1343 |
+
"epoch": 1.04,
|
1344 |
+
"learning_rate": 1.4664707409194598e-05,
|
1345 |
+
"loss": 0.1852,
|
1346 |
+
"step": 446
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 1.04,
|
1350 |
+
"learning_rate": 1.462140117600721e-05,
|
1351 |
+
"loss": 0.1909,
|
1352 |
+
"step": 448
|
1353 |
+
},
|
1354 |
+
{
|
1355 |
+
"epoch": 1.05,
|
1356 |
+
"learning_rate": 1.457798445197694e-05,
|
1357 |
+
"loss": 0.1845,
|
1358 |
+
"step": 450
|
1359 |
+
},
|
1360 |
+
{
|
1361 |
+
"epoch": 1.05,
|
1362 |
+
"learning_rate": 1.4534458275133214e-05,
|
1363 |
+
"loss": 0.1772,
|
1364 |
+
"step": 452
|
1365 |
+
},
|
1366 |
+
{
|
1367 |
+
"epoch": 1.06,
|
1368 |
+
"learning_rate": 1.449082368612232e-05,
|
1369 |
+
"loss": 0.1873,
|
1370 |
+
"step": 454
|
1371 |
+
},
|
1372 |
+
{
|
1373 |
+
"epoch": 1.06,
|
1374 |
+
"learning_rate": 1.4447081728182518e-05,
|
1375 |
+
"loss": 0.1983,
|
1376 |
+
"step": 456
|
1377 |
+
},
|
1378 |
+
{
|
1379 |
+
"epoch": 1.07,
|
1380 |
+
"learning_rate": 1.4403233447119096e-05,
|
1381 |
+
"loss": 0.192,
|
1382 |
+
"step": 458
|
1383 |
+
},
|
1384 |
+
{
|
1385 |
+
"epoch": 1.07,
|
1386 |
+
"learning_rate": 1.4359279891279376e-05,
|
1387 |
+
"loss": 0.1808,
|
1388 |
+
"step": 460
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 1.08,
|
1392 |
+
"learning_rate": 1.431522211152764e-05,
|
1393 |
+
"loss": 0.1893,
|
1394 |
+
"step": 462
|
1395 |
+
},
|
1396 |
+
{
|
1397 |
+
"epoch": 1.08,
|
1398 |
+
"learning_rate": 1.4271061161220007e-05,
|
1399 |
+
"loss": 0.186,
|
1400 |
+
"step": 464
|
1401 |
+
},
|
1402 |
+
{
|
1403 |
+
"epoch": 1.08,
|
1404 |
+
"learning_rate": 1.4226798096179262e-05,
|
1405 |
+
"loss": 0.1854,
|
1406 |
+
"step": 466
|
1407 |
+
},
|
1408 |
+
{
|
1409 |
+
"epoch": 1.09,
|
1410 |
+
"learning_rate": 1.4182433974669584e-05,
|
1411 |
+
"loss": 0.1736,
|
1412 |
+
"step": 468
|
1413 |
+
},
|
1414 |
+
{
|
1415 |
+
"epoch": 1.09,
|
1416 |
+
"learning_rate": 1.4137969857371277e-05,
|
1417 |
+
"loss": 0.1876,
|
1418 |
+
"step": 470
|
1419 |
+
},
|
1420 |
+
{
|
1421 |
+
"epoch": 1.1,
|
1422 |
+
"learning_rate": 1.4093406807355389e-05,
|
1423 |
+
"loss": 0.1904,
|
1424 |
+
"step": 472
|
1425 |
+
},
|
1426 |
+
{
|
1427 |
+
"epoch": 1.1,
|
1428 |
+
"learning_rate": 1.4048745890058304e-05,
|
1429 |
+
"loss": 0.1829,
|
1430 |
+
"step": 474
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 1.11,
|
1434 |
+
"learning_rate": 1.4003988173256267e-05,
|
1435 |
+
"loss": 0.1835,
|
1436 |
+
"step": 476
|
1437 |
+
},
|
1438 |
+
{
|
1439 |
+
"epoch": 1.11,
|
1440 |
+
"learning_rate": 1.3959134727039854e-05,
|
1441 |
+
"loss": 0.1829,
|
1442 |
+
"step": 478
|
1443 |
+
},
|
1444 |
+
{
|
1445 |
+
"epoch": 1.12,
|
1446 |
+
"learning_rate": 1.3914186623788398e-05,
|
1447 |
+
"loss": 0.1907,
|
1448 |
+
"step": 480
|
1449 |
+
},
|
1450 |
+
{
|
1451 |
+
"epoch": 1.12,
|
1452 |
+
"learning_rate": 1.3869144938144325e-05,
|
1453 |
+
"loss": 0.1842,
|
1454 |
+
"step": 482
|
1455 |
+
},
|
1456 |
+
{
|
1457 |
+
"epoch": 1.13,
|
1458 |
+
"learning_rate": 1.3824010746987495e-05,
|
1459 |
+
"loss": 0.1929,
|
1460 |
+
"step": 484
|
1461 |
+
},
|
1462 |
+
{
|
1463 |
+
"epoch": 1.13,
|
1464 |
+
"learning_rate": 1.3778785129409424e-05,
|
1465 |
+
"loss": 0.1824,
|
1466 |
+
"step": 486
|
1467 |
+
},
|
1468 |
+
{
|
1469 |
+
"epoch": 1.14,
|
1470 |
+
"learning_rate": 1.3733469166687505e-05,
|
1471 |
+
"loss": 0.1867,
|
1472 |
+
"step": 488
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 1.14,
|
1476 |
+
"learning_rate": 1.3688063942259141e-05,
|
1477 |
+
"loss": 0.1842,
|
1478 |
+
"step": 490
|
1479 |
+
},
|
1480 |
+
{
|
1481 |
+
"epoch": 1.15,
|
1482 |
+
"learning_rate": 1.3642570541695867e-05,
|
1483 |
+
"loss": 0.1874,
|
1484 |
+
"step": 492
|
1485 |
+
},
|
1486 |
+
{
|
1487 |
+
"epoch": 1.15,
|
1488 |
+
"learning_rate": 1.359699005267736e-05,
|
1489 |
+
"loss": 0.1985,
|
1490 |
+
"step": 494
|
1491 |
+
},
|
1492 |
+
{
|
1493 |
+
"epoch": 1.15,
|
1494 |
+
"learning_rate": 1.3551323564965465e-05,
|
1495 |
+
"loss": 0.1671,
|
1496 |
+
"step": 496
|
1497 |
+
},
|
1498 |
+
{
|
1499 |
+
"epoch": 1.16,
|
1500 |
+
"learning_rate": 1.3505572170378118e-05,
|
1501 |
+
"loss": 0.1861,
|
1502 |
+
"step": 498
|
1503 |
+
},
|
1504 |
+
{
|
1505 |
+
"epoch": 1.16,
|
1506 |
+
"learning_rate": 1.3459736962763263e-05,
|
1507 |
+
"loss": 0.1873,
|
1508 |
+
"step": 500
|
1509 |
+
},
|
1510 |
+
{
|
1511 |
+
"epoch": 1.17,
|
1512 |
+
"learning_rate": 1.3413819037972682e-05,
|
1513 |
+
"loss": 0.1946,
|
1514 |
+
"step": 502
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 1.17,
|
1518 |
+
"learning_rate": 1.33678194938358e-05,
|
1519 |
+
"loss": 0.1769,
|
1520 |
+
"step": 504
|
1521 |
+
},
|
1522 |
+
{
|
1523 |
+
"epoch": 1.18,
|
1524 |
+
"learning_rate": 1.332173943013345e-05,
|
1525 |
+
"loss": 0.205,
|
1526 |
+
"step": 506
|
1527 |
+
},
|
1528 |
+
{
|
1529 |
+
"epoch": 1.18,
|
1530 |
+
"learning_rate": 1.327557994857156e-05,
|
1531 |
+
"loss": 0.1899,
|
1532 |
+
"step": 508
|
1533 |
+
},
|
1534 |
+
{
|
1535 |
+
"epoch": 1.19,
|
1536 |
+
"learning_rate": 1.322934215275482e-05,
|
1537 |
+
"loss": 0.1746,
|
1538 |
+
"step": 510
|
1539 |
+
},
|
1540 |
+
{
|
1541 |
+
"epoch": 1.19,
|
1542 |
+
"learning_rate": 1.3183027148160304e-05,
|
1543 |
+
"loss": 0.1843,
|
1544 |
+
"step": 512
|
1545 |
+
},
|
1546 |
+
{
|
1547 |
+
"epoch": 1.2,
|
1548 |
+
"learning_rate": 1.3136636042111025e-05,
|
1549 |
+
"loss": 0.165,
|
1550 |
+
"step": 514
|
1551 |
+
},
|
1552 |
+
{
|
1553 |
+
"epoch": 1.2,
|
1554 |
+
"learning_rate": 1.3090169943749475e-05,
|
1555 |
+
"loss": 0.189,
|
1556 |
+
"step": 516
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 1.21,
|
1560 |
+
"learning_rate": 1.3043629964011104e-05,
|
1561 |
+
"loss": 0.1745,
|
1562 |
+
"step": 518
|
1563 |
+
},
|
1564 |
+
{
|
1565 |
+
"epoch": 1.21,
|
1566 |
+
"learning_rate": 1.2997017215597743e-05,
|
1567 |
+
"loss": 0.1829,
|
1568 |
+
"step": 520
|
1569 |
+
},
|
1570 |
+
{
|
1571 |
+
"epoch": 1.22,
|
1572 |
+
"learning_rate": 1.295033281295103e-05,
|
1573 |
+
"loss": 0.1871,
|
1574 |
+
"step": 522
|
1575 |
+
},
|
1576 |
+
{
|
1577 |
+
"epoch": 1.22,
|
1578 |
+
"learning_rate": 1.2903577872225737e-05,
|
1579 |
+
"loss": 0.1786,
|
1580 |
+
"step": 524
|
1581 |
+
},
|
1582 |
+
{
|
1583 |
+
"epoch": 1.22,
|
1584 |
+
"learning_rate": 1.2856753511263105e-05,
|
1585 |
+
"loss": 0.1759,
|
1586 |
+
"step": 526
|
1587 |
+
},
|
1588 |
+
{
|
1589 |
+
"epoch": 1.23,
|
1590 |
+
"learning_rate": 1.2809860849564103e-05,
|
1591 |
+
"loss": 0.2027,
|
1592 |
+
"step": 528
|
1593 |
+
},
|
1594 |
+
{
|
1595 |
+
"epoch": 1.23,
|
1596 |
+
"learning_rate": 1.2762901008262678e-05,
|
1597 |
+
"loss": 0.1824,
|
1598 |
+
"step": 530
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 1.24,
|
1602 |
+
"learning_rate": 1.271587511009893e-05,
|
1603 |
+
"loss": 0.1805,
|
1604 |
+
"step": 532
|
1605 |
+
},
|
1606 |
+
{
|
1607 |
+
"epoch": 1.24,
|
1608 |
+
"learning_rate": 1.2668784279392287e-05,
|
1609 |
+
"loss": 0.1777,
|
1610 |
+
"step": 534
|
1611 |
+
},
|
1612 |
+
{
|
1613 |
+
"epoch": 1.25,
|
1614 |
+
"learning_rate": 1.2621629642014623e-05,
|
1615 |
+
"loss": 0.1873,
|
1616 |
+
"step": 536
|
1617 |
+
},
|
1618 |
+
{
|
1619 |
+
"epoch": 1.25,
|
1620 |
+
"learning_rate": 1.2574412325363326e-05,
|
1621 |
+
"loss": 0.184,
|
1622 |
+
"step": 538
|
1623 |
+
},
|
1624 |
+
{
|
1625 |
+
"epoch": 1.26,
|
1626 |
+
"learning_rate": 1.2527133458334353e-05,
|
1627 |
+
"loss": 0.1932,
|
1628 |
+
"step": 540
|
1629 |
+
},
|
1630 |
+
{
|
1631 |
+
"epoch": 1.26,
|
1632 |
+
"learning_rate": 1.2479794171295248e-05,
|
1633 |
+
"loss": 0.1875,
|
1634 |
+
"step": 542
|
1635 |
+
},
|
1636 |
+
{
|
1637 |
+
"epoch": 1.27,
|
1638 |
+
"learning_rate": 1.2432395596058097e-05,
|
1639 |
+
"loss": 0.1853,
|
1640 |
+
"step": 544
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 1.27,
|
1644 |
+
"learning_rate": 1.2384938865852482e-05,
|
1645 |
+
"loss": 0.1815,
|
1646 |
+
"step": 546
|
1647 |
+
},
|
1648 |
+
{
|
1649 |
+
"epoch": 1.28,
|
1650 |
+
"learning_rate": 1.2337425115298389e-05,
|
1651 |
+
"loss": 0.1845,
|
1652 |
+
"step": 548
|
1653 |
+
},
|
1654 |
+
{
|
1655 |
+
"epoch": 1.28,
|
1656 |
+
"learning_rate": 1.2289855480379074e-05,
|
1657 |
+
"loss": 0.1953,
|
1658 |
+
"step": 550
|
1659 |
+
},
|
1660 |
+
{
|
1661 |
+
"epoch": 1.29,
|
1662 |
+
"learning_rate": 1.22422310984139e-05,
|
1663 |
+
"loss": 0.1886,
|
1664 |
+
"step": 552
|
1665 |
+
},
|
1666 |
+
{
|
1667 |
+
"epoch": 1.29,
|
1668 |
+
"learning_rate": 1.2194553108031153e-05,
|
1669 |
+
"loss": 0.1875,
|
1670 |
+
"step": 554
|
1671 |
+
},
|
1672 |
+
{
|
1673 |
+
"epoch": 1.29,
|
1674 |
+
"learning_rate": 1.214682264914082e-05,
|
1675 |
+
"loss": 0.1829,
|
1676 |
+
"step": 556
|
1677 |
+
},
|
1678 |
+
{
|
1679 |
+
"epoch": 1.3,
|
1680 |
+
"learning_rate": 1.2099040862907332e-05,
|
1681 |
+
"loss": 0.1935,
|
1682 |
+
"step": 558
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 1.3,
|
1686 |
+
"learning_rate": 1.2051208891722274e-05,
|
1687 |
+
"loss": 0.1851,
|
1688 |
+
"step": 560
|
1689 |
+
},
|
1690 |
+
{
|
1691 |
+
"epoch": 1.31,
|
1692 |
+
"learning_rate": 1.2003327879177085e-05,
|
1693 |
+
"loss": 0.1991,
|
1694 |
+
"step": 562
|
1695 |
+
},
|
1696 |
+
{
|
1697 |
+
"epoch": 1.31,
|
1698 |
+
"learning_rate": 1.195539897003571e-05,
|
1699 |
+
"loss": 0.1927,
|
1700 |
+
"step": 564
|
1701 |
+
},
|
1702 |
+
{
|
1703 |
+
"epoch": 1.32,
|
1704 |
+
"learning_rate": 1.190742331020723e-05,
|
1705 |
+
"loss": 0.183,
|
1706 |
+
"step": 566
|
1707 |
+
},
|
1708 |
+
{
|
1709 |
+
"epoch": 1.32,
|
1710 |
+
"learning_rate": 1.185940204671846e-05,
|
1711 |
+
"loss": 0.201,
|
1712 |
+
"step": 568
|
1713 |
+
},
|
1714 |
+
{
|
1715 |
+
"epoch": 1.33,
|
1716 |
+
"learning_rate": 1.1811336327686537e-05,
|
1717 |
+
"loss": 0.198,
|
1718 |
+
"step": 570
|
1719 |
+
},
|
1720 |
+
{
|
1721 |
+
"epoch": 1.33,
|
1722 |
+
"learning_rate": 1.1763227302291464e-05,
|
1723 |
+
"loss": 0.185,
|
1724 |
+
"step": 572
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 1.34,
|
1728 |
+
"learning_rate": 1.1715076120748631e-05,
|
1729 |
+
"loss": 0.179,
|
1730 |
+
"step": 574
|
1731 |
+
},
|
1732 |
+
{
|
1733 |
+
"epoch": 1.34,
|
1734 |
+
"learning_rate": 1.1666883934281324e-05,
|
1735 |
+
"loss": 0.1934,
|
1736 |
+
"step": 576
|
1737 |
+
},
|
1738 |
+
{
|
1739 |
+
"epoch": 1.35,
|
1740 |
+
"learning_rate": 1.1618651895093192e-05,
|
1741 |
+
"loss": 0.1996,
|
1742 |
+
"step": 578
|
1743 |
+
},
|
1744 |
+
{
|
1745 |
+
"epoch": 1.35,
|
1746 |
+
"learning_rate": 1.1570381156340701e-05,
|
1747 |
+
"loss": 0.1813,
|
1748 |
+
"step": 580
|
1749 |
+
},
|
1750 |
+
{
|
1751 |
+
"epoch": 1.36,
|
1752 |
+
"learning_rate": 1.1522072872105576e-05,
|
1753 |
+
"loss": 0.1874,
|
1754 |
+
"step": 582
|
1755 |
+
},
|
1756 |
+
{
|
1757 |
+
"epoch": 1.36,
|
1758 |
+
"learning_rate": 1.147372819736719e-05,
|
1759 |
+
"loss": 0.1773,
|
1760 |
+
"step": 584
|
1761 |
+
},
|
1762 |
+
{
|
1763 |
+
"epoch": 1.36,
|
1764 |
+
"learning_rate": 1.1425348287974956e-05,
|
1765 |
+
"loss": 0.1912,
|
1766 |
+
"step": 586
|
1767 |
+
},
|
1768 |
+
{
|
1769 |
+
"epoch": 1.37,
|
1770 |
+
"learning_rate": 1.1376934300620706e-05,
|
1771 |
+
"loss": 0.1949,
|
1772 |
+
"step": 588
|
1773 |
+
},
|
1774 |
+
{
|
1775 |
+
"epoch": 1.37,
|
1776 |
+
"learning_rate": 1.1328487392811019e-05,
|
1777 |
+
"loss": 0.1883,
|
1778 |
+
"step": 590
|
1779 |
+
},
|
1780 |
+
{
|
1781 |
+
"epoch": 1.38,
|
1782 |
+
"learning_rate": 1.1280008722839552e-05,
|
1783 |
+
"loss": 0.1766,
|
1784 |
+
"step": 592
|
1785 |
+
},
|
1786 |
+
{
|
1787 |
+
"epoch": 1.38,
|
1788 |
+
"learning_rate": 1.1231499449759355e-05,
|
1789 |
+
"loss": 0.1987,
|
1790 |
+
"step": 594
|
1791 |
+
},
|
1792 |
+
{
|
1793 |
+
"epoch": 1.39,
|
1794 |
+
"learning_rate": 1.1182960733355142e-05,
|
1795 |
+
"loss": 0.1785,
|
1796 |
+
"step": 596
|
1797 |
+
},
|
1798 |
+
{
|
1799 |
+
"epoch": 1.39,
|
1800 |
+
"learning_rate": 1.1134393734115587e-05,
|
1801 |
+
"loss": 0.1961,
|
1802 |
+
"step": 598
|
1803 |
+
},
|
1804 |
+
{
|
1805 |
+
"epoch": 1.4,
|
1806 |
+
"learning_rate": 1.1085799613205552e-05,
|
1807 |
+
"loss": 0.1805,
|
1808 |
+
"step": 600
|
1809 |
+
},
|
1810 |
+
{
|
1811 |
+
"epoch": 1.4,
|
1812 |
+
"learning_rate": 1.1037179532438345e-05,
|
1813 |
+
"loss": 0.1745,
|
1814 |
+
"step": 602
|
1815 |
+
},
|
1816 |
+
{
|
1817 |
+
"epoch": 1.41,
|
1818 |
+
"learning_rate": 1.098853465424793e-05,
|
1819 |
+
"loss": 0.1904,
|
1820 |
+
"step": 604
|
1821 |
+
},
|
1822 |
+
{
|
1823 |
+
"epoch": 1.41,
|
1824 |
+
"learning_rate": 1.0939866141661148e-05,
|
1825 |
+
"loss": 0.1858,
|
1826 |
+
"step": 606
|
1827 |
+
},
|
1828 |
+
{
|
1829 |
+
"epoch": 1.42,
|
1830 |
+
"learning_rate": 1.08911751582699e-05,
|
1831 |
+
"loss": 0.2095,
|
1832 |
+
"step": 608
|
1833 |
+
},
|
1834 |
+
{
|
1835 |
+
"epoch": 1.42,
|
1836 |
+
"learning_rate": 1.0842462868203329e-05,
|
1837 |
+
"loss": 0.1935,
|
1838 |
+
"step": 610
|
1839 |
+
},
|
1840 |
+
{
|
1841 |
+
"epoch": 1.42,
|
1842 |
+
"learning_rate": 1.079373043609999e-05,
|
1843 |
+
"loss": 0.1807,
|
1844 |
+
"step": 612
|
1845 |
+
},
|
1846 |
+
{
|
1847 |
+
"epoch": 1.43,
|
1848 |
+
"learning_rate": 1.0744979027080003e-05,
|
1849 |
+
"loss": 0.194,
|
1850 |
+
"step": 614
|
1851 |
+
},
|
1852 |
+
{
|
1853 |
+
"epoch": 1.43,
|
1854 |
+
"learning_rate": 1.06962098067172e-05,
|
1855 |
+
"loss": 0.196,
|
1856 |
+
"step": 616
|
1857 |
+
},
|
1858 |
+
{
|
1859 |
+
"epoch": 1.44,
|
1860 |
+
"learning_rate": 1.0647423941011255e-05,
|
1861 |
+
"loss": 0.1916,
|
1862 |
+
"step": 618
|
1863 |
+
},
|
1864 |
+
{
|
1865 |
+
"epoch": 1.44,
|
1866 |
+
"learning_rate": 1.0598622596359808e-05,
|
1867 |
+
"loss": 0.1904,
|
1868 |
+
"step": 620
|
1869 |
+
},
|
1870 |
+
{
|
1871 |
+
"epoch": 1.45,
|
1872 |
+
"learning_rate": 1.054980693953058e-05,
|
1873 |
+
"loss": 0.1766,
|
1874 |
+
"step": 622
|
1875 |
+
},
|
1876 |
+
{
|
1877 |
+
"epoch": 1.45,
|
1878 |
+
"learning_rate": 1.0500978137633469e-05,
|
1879 |
+
"loss": 0.1946,
|
1880 |
+
"step": 624
|
1881 |
+
},
|
1882 |
+
{
|
1883 |
+
"epoch": 1.46,
|
1884 |
+
"learning_rate": 1.0452137358092654e-05,
|
1885 |
+
"loss": 0.1918,
|
1886 |
+
"step": 626
|
1887 |
+
},
|
1888 |
+
{
|
1889 |
+
"epoch": 1.46,
|
1890 |
+
"learning_rate": 1.0403285768618682e-05,
|
1891 |
+
"loss": 0.1813,
|
1892 |
+
"step": 628
|
1893 |
+
},
|
1894 |
+
{
|
1895 |
+
"epoch": 1.47,
|
1896 |
+
"learning_rate": 1.0354424537180554e-05,
|
1897 |
+
"loss": 0.1879,
|
1898 |
+
"step": 630
|
1899 |
+
},
|
1900 |
+
{
|
1901 |
+
"epoch": 1.47,
|
1902 |
+
"learning_rate": 1.0305554831977788e-05,
|
1903 |
+
"loss": 0.1857,
|
1904 |
+
"step": 632
|
1905 |
+
},
|
1906 |
+
{
|
1907 |
+
"epoch": 1.48,
|
1908 |
+
"learning_rate": 1.0256677821412508e-05,
|
1909 |
+
"loss": 0.1949,
|
1910 |
+
"step": 634
|
1911 |
+
},
|
1912 |
+
{
|
1913 |
+
"epoch": 1.48,
|
1914 |
+
"learning_rate": 1.0207794674061483e-05,
|
1915 |
+
"loss": 0.209,
|
1916 |
+
"step": 636
|
1917 |
+
},
|
1918 |
+
{
|
1919 |
+
"epoch": 1.49,
|
1920 |
+
"learning_rate": 1.015890655864822e-05,
|
1921 |
+
"loss": 0.2652,
|
1922 |
+
"step": 638
|
1923 |
+
},
|
1924 |
+
{
|
1925 |
+
"epoch": 1.49,
|
1926 |
+
"learning_rate": 1.0110014644014994e-05,
|
1927 |
+
"loss": 0.263,
|
1928 |
+
"step": 640
|
1929 |
+
},
|
1930 |
+
{
|
1931 |
+
"epoch": 1.49,
|
1932 |
+
"learning_rate": 1.0061120099094917e-05,
|
1933 |
+
"loss": 0.2231,
|
1934 |
+
"step": 642
|
1935 |
+
},
|
1936 |
+
{
|
1937 |
+
"epoch": 1.5,
|
1938 |
+
"learning_rate": 1.0012224092883986e-05,
|
1939 |
+
"loss": 0.2141,
|
1940 |
+
"step": 644
|
1941 |
+
},
|
1942 |
+
{
|
1943 |
+
"epoch": 1.5,
|
1944 |
+
"learning_rate": 9.963327794413137e-06,
|
1945 |
+
"loss": 0.2057,
|
1946 |
+
"step": 646
|
1947 |
+
},
|
1948 |
+
{
|
1949 |
+
"epoch": 1.51,
|
1950 |
+
"learning_rate": 9.914432372720294e-06,
|
1951 |
+
"loss": 0.2352,
|
1952 |
+
"step": 648
|
1953 |
+
},
|
1954 |
+
{
|
1955 |
+
"epoch": 1.51,
|
1956 |
+
"learning_rate": 9.865538996822418e-06,
|
1957 |
+
"loss": 0.2138,
|
1958 |
+
"step": 650
|
1959 |
+
},
|
1960 |
+
{
|
1961 |
+
"epoch": 1.52,
|
1962 |
+
"learning_rate": 9.816648835687557e-06,
|
1963 |
+
"loss": 0.2054,
|
1964 |
+
"step": 652
|
1965 |
+
},
|
1966 |
+
{
|
1967 |
+
"epoch": 1.52,
|
1968 |
+
"learning_rate": 9.767763058206897e-06,
|
1969 |
+
"loss": 0.2073,
|
1970 |
+
"step": 654
|
1971 |
+
},
|
1972 |
+
{
|
1973 |
+
"epoch": 1.53,
|
1974 |
+
"learning_rate": 9.718882833166823e-06,
|
1975 |
+
"loss": 0.2001,
|
1976 |
+
"step": 656
|
1977 |
+
},
|
1978 |
+
{
|
1979 |
+
"epoch": 1.53,
|
1980 |
+
"learning_rate": 9.670009329220963e-06,
|
1981 |
+
"loss": 0.1985,
|
1982 |
+
"step": 658
|
1983 |
+
},
|
1984 |
+
{
|
1985 |
+
"epoch": 1.54,
|
1986 |
+
"learning_rate": 9.62114371486226e-06,
|
1987 |
+
"loss": 0.2006,
|
1988 |
+
"step": 660
|
1989 |
+
},
|
1990 |
+
{
|
1991 |
+
"epoch": 1.54,
|
1992 |
+
"learning_rate": 9.572287158395025e-06,
|
1993 |
+
"loss": 0.2005,
|
1994 |
+
"step": 662
|
1995 |
+
},
|
1996 |
+
{
|
1997 |
+
"epoch": 1.55,
|
1998 |
+
"learning_rate": 9.523440827907006e-06,
|
1999 |
+
"loss": 0.1974,
|
2000 |
+
"step": 664
|
2001 |
+
},
|
2002 |
+
{
|
2003 |
+
"epoch": 1.55,
|
2004 |
+
"learning_rate": 9.474605891241465e-06,
|
2005 |
+
"loss": 0.207,
|
2006 |
+
"step": 666
|
2007 |
+
},
|
2008 |
+
{
|
2009 |
+
"epoch": 1.56,
|
2010 |
+
"learning_rate": 9.425783515969258e-06,
|
2011 |
+
"loss": 0.1863,
|
2012 |
+
"step": 668
|
2013 |
+
},
|
2014 |
+
{
|
2015 |
+
"epoch": 1.56,
|
2016 |
+
"learning_rate": 9.376974869360918e-06,
|
2017 |
+
"loss": 0.2004,
|
2018 |
+
"step": 670
|
2019 |
+
},
|
2020 |
+
{
|
2021 |
+
"epoch": 1.56,
|
2022 |
+
"learning_rate": 9.328181118358734e-06,
|
2023 |
+
"loss": 0.1884,
|
2024 |
+
"step": 672
|
2025 |
+
},
|
2026 |
+
{
|
2027 |
+
"epoch": 1.57,
|
2028 |
+
"learning_rate": 9.279403429548877e-06,
|
2029 |
+
"loss": 0.1884,
|
2030 |
+
"step": 674
|
2031 |
+
},
|
2032 |
+
{
|
2033 |
+
"epoch": 1.57,
|
2034 |
+
"learning_rate": 9.230642969133483e-06,
|
2035 |
+
"loss": 0.1939,
|
2036 |
+
"step": 676
|
2037 |
+
},
|
2038 |
+
{
|
2039 |
+
"epoch": 1.58,
|
2040 |
+
"learning_rate": 9.181900902902794e-06,
|
2041 |
+
"loss": 0.2122,
|
2042 |
+
"step": 678
|
2043 |
+
},
|
2044 |
+
{
|
2045 |
+
"epoch": 1.58,
|
2046 |
+
"learning_rate": 9.13317839620727e-06,
|
2047 |
+
"loss": 0.197,
|
2048 |
+
"step": 680
|
2049 |
+
},
|
2050 |
+
{
|
2051 |
+
"epoch": 1.59,
|
2052 |
+
"learning_rate": 9.084476613929726e-06,
|
2053 |
+
"loss": 0.1765,
|
2054 |
+
"step": 682
|
2055 |
+
},
|
2056 |
+
{
|
2057 |
+
"epoch": 1.59,
|
2058 |
+
"learning_rate": 9.035796720457495e-06,
|
2059 |
+
"loss": 0.1879,
|
2060 |
+
"step": 684
|
2061 |
+
},
|
2062 |
+
{
|
2063 |
+
"epoch": 1.6,
|
2064 |
+
"learning_rate": 8.987139879654575e-06,
|
2065 |
+
"loss": 0.189,
|
2066 |
+
"step": 686
|
2067 |
+
},
|
2068 |
+
{
|
2069 |
+
"epoch": 1.6,
|
2070 |
+
"learning_rate": 8.938507254833811e-06,
|
2071 |
+
"loss": 0.1925,
|
2072 |
+
"step": 688
|
2073 |
+
},
|
2074 |
+
{
|
2075 |
+
"epoch": 1.61,
|
2076 |
+
"learning_rate": 8.889900008729084e-06,
|
2077 |
+
"loss": 0.197,
|
2078 |
+
"step": 690
|
2079 |
+
},
|
2080 |
+
{
|
2081 |
+
"epoch": 1.61,
|
2082 |
+
"learning_rate": 8.841319303467502e-06,
|
2083 |
+
"loss": 0.1954,
|
2084 |
+
"step": 692
|
2085 |
+
},
|
2086 |
+
{
|
2087 |
+
"epoch": 1.62,
|
2088 |
+
"learning_rate": 8.792766300541622e-06,
|
2089 |
+
"loss": 0.1815,
|
2090 |
+
"step": 694
|
2091 |
+
},
|
2092 |
+
{
|
2093 |
+
"epoch": 1.62,
|
2094 |
+
"learning_rate": 8.744242160781682e-06,
|
2095 |
+
"loss": 0.1914,
|
2096 |
+
"step": 696
|
2097 |
+
},
|
2098 |
+
{
|
2099 |
+
"epoch": 1.63,
|
2100 |
+
"learning_rate": 8.69574804432784e-06,
|
2101 |
+
"loss": 0.186,
|
2102 |
+
"step": 698
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"epoch": 1.63,
|
2106 |
+
"learning_rate": 8.647285110602443e-06,
|
2107 |
+
"loss": 0.1937,
|
2108 |
+
"step": 700
|
2109 |
+
},
|
2110 |
+
{
|
2111 |
+
"epoch": 1.63,
|
2112 |
+
"learning_rate": 8.59885451828231e-06,
|
2113 |
+
"loss": 0.198,
|
2114 |
+
"step": 702
|
2115 |
+
},
|
2116 |
+
{
|
2117 |
+
"epoch": 1.64,
|
2118 |
+
"learning_rate": 8.550457425271022e-06,
|
2119 |
+
"loss": 0.1819,
|
2120 |
+
"step": 704
|
2121 |
+
},
|
2122 |
+
{
|
2123 |
+
"epoch": 1.64,
|
2124 |
+
"learning_rate": 8.502094988671232e-06,
|
2125 |
+
"loss": 0.2001,
|
2126 |
+
"step": 706
|
2127 |
+
},
|
2128 |
+
{
|
2129 |
+
"epoch": 1.65,
|
2130 |
+
"learning_rate": 8.453768364757027e-06,
|
2131 |
+
"loss": 0.1704,
|
2132 |
+
"step": 708
|
2133 |
+
},
|
2134 |
+
{
|
2135 |
+
"epoch": 1.65,
|
2136 |
+
"learning_rate": 8.405478708946254e-06,
|
2137 |
+
"loss": 0.1873,
|
2138 |
+
"step": 710
|
2139 |
+
},
|
2140 |
+
{
|
2141 |
+
"epoch": 1.66,
|
2142 |
+
"learning_rate": 8.35722717577291e-06,
|
2143 |
+
"loss": 0.1771,
|
2144 |
+
"step": 712
|
2145 |
+
},
|
2146 |
+
{
|
2147 |
+
"epoch": 1.66,
|
2148 |
+
"learning_rate": 8.309014918859538e-06,
|
2149 |
+
"loss": 0.1843,
|
2150 |
+
"step": 714
|
2151 |
+
},
|
2152 |
+
{
|
2153 |
+
"epoch": 1.67,
|
2154 |
+
"learning_rate": 8.26084309088964e-06,
|
2155 |
+
"loss": 0.1808,
|
2156 |
+
"step": 716
|
2157 |
+
},
|
2158 |
+
{
|
2159 |
+
"epoch": 1.67,
|
2160 |
+
"learning_rate": 8.212712843580124e-06,
|
2161 |
+
"loss": 0.2045,
|
2162 |
+
"step": 718
|
2163 |
+
},
|
2164 |
+
{
|
2165 |
+
"epoch": 1.68,
|
2166 |
+
"learning_rate": 8.164625327653772e-06,
|
2167 |
+
"loss": 0.1799,
|
2168 |
+
"step": 720
|
2169 |
+
},
|
2170 |
+
{
|
2171 |
+
"epoch": 1.68,
|
2172 |
+
"learning_rate": 8.116581692811711e-06,
|
2173 |
+
"loss": 0.1838,
|
2174 |
+
"step": 722
|
2175 |
+
},
|
2176 |
+
{
|
2177 |
+
"epoch": 1.69,
|
2178 |
+
"learning_rate": 8.068583087705946e-06,
|
2179 |
+
"loss": 0.1923,
|
2180 |
+
"step": 724
|
2181 |
+
},
|
2182 |
+
{
|
2183 |
+
"epoch": 1.69,
|
2184 |
+
"learning_rate": 8.020630659911881e-06,
|
2185 |
+
"loss": 0.1827,
|
2186 |
+
"step": 726
|
2187 |
+
},
|
2188 |
+
{
|
2189 |
+
"epoch": 1.69,
|
2190 |
+
"learning_rate": 7.972725555900895e-06,
|
2191 |
+
"loss": 0.1819,
|
2192 |
+
"step": 728
|
2193 |
+
},
|
2194 |
+
{
|
2195 |
+
"epoch": 1.7,
|
2196 |
+
"learning_rate": 7.924868921012918e-06,
|
2197 |
+
"loss": 0.1824,
|
2198 |
+
"step": 730
|
2199 |
+
},
|
2200 |
+
{
|
2201 |
+
"epoch": 1.7,
|
2202 |
+
"learning_rate": 7.877061899429067e-06,
|
2203 |
+
"loss": 0.1973,
|
2204 |
+
"step": 732
|
2205 |
+
},
|
2206 |
+
{
|
2207 |
+
"epoch": 1.71,
|
2208 |
+
"learning_rate": 7.829305634144264e-06,
|
2209 |
+
"loss": 0.183,
|
2210 |
+
"step": 734
|
2211 |
+
},
|
2212 |
+
{
|
2213 |
+
"epoch": 1.71,
|
2214 |
+
"learning_rate": 7.781601266939936e-06,
|
2215 |
+
"loss": 0.1652,
|
2216 |
+
"step": 736
|
2217 |
+
},
|
2218 |
+
{
|
2219 |
+
"epoch": 1.72,
|
2220 |
+
"learning_rate": 7.733949938356695e-06,
|
2221 |
+
"loss": 0.1895,
|
2222 |
+
"step": 738
|
2223 |
+
},
|
2224 |
+
{
|
2225 |
+
"epoch": 1.72,
|
2226 |
+
"learning_rate": 7.686352787667083e-06,
|
2227 |
+
"loss": 0.1845,
|
2228 |
+
"step": 740
|
2229 |
+
},
|
2230 |
+
{
|
2231 |
+
"epoch": 1.73,
|
2232 |
+
"learning_rate": 7.638810952848328e-06,
|
2233 |
+
"loss": 0.1894,
|
2234 |
+
"step": 742
|
2235 |
+
},
|
2236 |
+
{
|
2237 |
+
"epoch": 1.73,
|
2238 |
+
"learning_rate": 7.591325570555136e-06,
|
2239 |
+
"loss": 0.1707,
|
2240 |
+
"step": 744
|
2241 |
+
},
|
2242 |
+
{
|
2243 |
+
"epoch": 1.74,
|
2244 |
+
"learning_rate": 7.543897776092519e-06,
|
2245 |
+
"loss": 0.1776,
|
2246 |
+
"step": 746
|
2247 |
+
},
|
2248 |
+
{
|
2249 |
+
"epoch": 1.74,
|
2250 |
+
"learning_rate": 7.496528703388648e-06,
|
2251 |
+
"loss": 0.1788,
|
2252 |
+
"step": 748
|
2253 |
+
},
|
2254 |
+
{
|
2255 |
+
"epoch": 1.75,
|
2256 |
+
"learning_rate": 7.449219484967749e-06,
|
2257 |
+
"loss": 0.1777,
|
2258 |
+
"step": 750
|
2259 |
+
},
|
2260 |
+
{
|
2261 |
+
"epoch": 1.75,
|
2262 |
+
"learning_rate": 7.401971251923015e-06,
|
2263 |
+
"loss": 0.183,
|
2264 |
+
"step": 752
|
2265 |
+
},
|
2266 |
+
{
|
2267 |
+
"epoch": 1.76,
|
2268 |
+
"learning_rate": 7.354785133889566e-06,
|
2269 |
+
"loss": 0.1857,
|
2270 |
+
"step": 754
|
2271 |
+
},
|
2272 |
+
{
|
2273 |
+
"epoch": 1.76,
|
2274 |
+
"learning_rate": 7.307662259017454e-06,
|
2275 |
+
"loss": 0.1892,
|
2276 |
+
"step": 756
|
2277 |
+
},
|
2278 |
+
{
|
2279 |
+
"epoch": 1.76,
|
2280 |
+
"learning_rate": 7.260603753944674e-06,
|
2281 |
+
"loss": 0.1785,
|
2282 |
+
"step": 758
|
2283 |
+
},
|
2284 |
+
{
|
2285 |
+
"epoch": 1.77,
|
2286 |
+
"learning_rate": 7.213610743770234e-06,
|
2287 |
+
"loss": 0.1884,
|
2288 |
+
"step": 760
|
2289 |
+
},
|
2290 |
+
{
|
2291 |
+
"epoch": 1.77,
|
2292 |
+
"learning_rate": 7.166684352027265e-06,
|
2293 |
+
"loss": 0.1773,
|
2294 |
+
"step": 762
|
2295 |
+
},
|
2296 |
+
{
|
2297 |
+
"epoch": 1.78,
|
2298 |
+
"learning_rate": 7.119825700656138e-06,
|
2299 |
+
"loss": 0.1862,
|
2300 |
+
"step": 764
|
2301 |
+
},
|
2302 |
+
{
|
2303 |
+
"epoch": 1.78,
|
2304 |
+
"learning_rate": 7.073035909977661e-06,
|
2305 |
+
"loss": 0.1872,
|
2306 |
+
"step": 766
|
2307 |
+
},
|
2308 |
+
{
|
2309 |
+
"epoch": 1.79,
|
2310 |
+
"learning_rate": 7.026316098666282e-06,
|
2311 |
+
"loss": 0.1917,
|
2312 |
+
"step": 768
|
2313 |
+
},
|
2314 |
+
{
|
2315 |
+
"epoch": 1.79,
|
2316 |
+
"learning_rate": 6.979667383723345e-06,
|
2317 |
+
"loss": 0.1823,
|
2318 |
+
"step": 770
|
2319 |
+
},
|
2320 |
+
{
|
2321 |
+
"epoch": 1.8,
|
2322 |
+
"learning_rate": 6.9330908804503874e-06,
|
2323 |
+
"loss": 0.179,
|
2324 |
+
"step": 772
|
2325 |
+
},
|
2326 |
+
{
|
2327 |
+
"epoch": 1.8,
|
2328 |
+
"learning_rate": 6.886587702422474e-06,
|
2329 |
+
"loss": 0.1731,
|
2330 |
+
"step": 774
|
2331 |
+
},
|
2332 |
+
{
|
2333 |
+
"epoch": 1.81,
|
2334 |
+
"learning_rate": 6.840158961461567e-06,
|
2335 |
+
"loss": 0.1843,
|
2336 |
+
"step": 776
|
2337 |
+
},
|
2338 |
+
{
|
2339 |
+
"epoch": 1.81,
|
2340 |
+
"learning_rate": 6.793805767609953e-06,
|
2341 |
+
"loss": 0.1789,
|
2342 |
+
"step": 778
|
2343 |
+
},
|
2344 |
+
{
|
2345 |
+
"epoch": 1.82,
|
2346 |
+
"learning_rate": 6.7475292291037e-06,
|
2347 |
+
"loss": 0.1851,
|
2348 |
+
"step": 780
|
2349 |
+
},
|
2350 |
+
{
|
2351 |
+
"epoch": 1.82,
|
2352 |
+
"learning_rate": 6.701330452346156e-06,
|
2353 |
+
"loss": 0.1795,
|
2354 |
+
"step": 782
|
2355 |
+
},
|
2356 |
+
{
|
2357 |
+
"epoch": 1.83,
|
2358 |
+
"learning_rate": 6.655210541881502e-06,
|
2359 |
+
"loss": 0.1907,
|
2360 |
+
"step": 784
|
2361 |
+
},
|
2362 |
+
{
|
2363 |
+
"epoch": 1.83,
|
2364 |
+
"learning_rate": 6.609170600368346e-06,
|
2365 |
+
"loss": 0.1885,
|
2366 |
+
"step": 786
|
2367 |
+
},
|
2368 |
+
{
|
2369 |
+
"epoch": 1.83,
|
2370 |
+
"learning_rate": 6.56321172855336e-06,
|
2371 |
+
"loss": 0.1804,
|
2372 |
+
"step": 788
|
2373 |
+
},
|
2374 |
+
{
|
2375 |
+
"epoch": 1.84,
|
2376 |
+
"learning_rate": 6.51733502524495e-06,
|
2377 |
+
"loss": 0.184,
|
2378 |
+
"step": 790
|
2379 |
+
},
|
2380 |
+
{
|
2381 |
+
"epoch": 1.84,
|
2382 |
+
"learning_rate": 6.471541587287003e-06,
|
2383 |
+
"loss": 0.186,
|
2384 |
+
"step": 792
|
2385 |
+
},
|
2386 |
+
{
|
2387 |
+
"epoch": 1.85,
|
2388 |
+
"learning_rate": 6.425832509532652e-06,
|
2389 |
+
"loss": 0.167,
|
2390 |
+
"step": 794
|
2391 |
+
},
|
2392 |
+
{
|
2393 |
+
"epoch": 1.85,
|
2394 |
+
"learning_rate": 6.380208884818104e-06,
|
2395 |
+
"loss": 0.1728,
|
2396 |
+
"step": 796
|
2397 |
+
},
|
2398 |
+
{
|
2399 |
+
"epoch": 1.86,
|
2400 |
+
"learning_rate": 6.3346718039365076e-06,
|
2401 |
+
"loss": 0.1765,
|
2402 |
+
"step": 798
|
2403 |
+
},
|
2404 |
+
{
|
2405 |
+
"epoch": 1.86,
|
2406 |
+
"learning_rate": 6.289222355611881e-06,
|
2407 |
+
"loss": 0.1813,
|
2408 |
+
"step": 800
|
2409 |
+
},
|
2410 |
+
{
|
2411 |
+
"epoch": 1.87,
|
2412 |
+
"learning_rate": 6.243861626473073e-06,
|
2413 |
+
"loss": 0.1875,
|
2414 |
+
"step": 802
|
2415 |
+
},
|
2416 |
+
{
|
2417 |
+
"epoch": 1.87,
|
2418 |
+
"learning_rate": 6.198590701027796e-06,
|
2419 |
+
"loss": 0.1829,
|
2420 |
+
"step": 804
|
2421 |
+
},
|
2422 |
+
{
|
2423 |
+
"epoch": 1.88,
|
2424 |
+
"learning_rate": 6.153410661636683e-06,
|
2425 |
+
"loss": 0.1803,
|
2426 |
+
"step": 806
|
2427 |
+
},
|
2428 |
+
{
|
2429 |
+
"epoch": 1.88,
|
2430 |
+
"learning_rate": 6.108322588487419e-06,
|
2431 |
+
"loss": 0.1768,
|
2432 |
+
"step": 808
|
2433 |
+
},
|
2434 |
+
{
|
2435 |
+
"epoch": 1.89,
|
2436 |
+
"learning_rate": 6.063327559568908e-06,
|
2437 |
+
"loss": 0.1764,
|
2438 |
+
"step": 810
|
2439 |
+
},
|
2440 |
+
{
|
2441 |
+
"epoch": 1.89,
|
2442 |
+
"learning_rate": 6.0184266506455125e-06,
|
2443 |
+
"loss": 0.1818,
|
2444 |
+
"step": 812
|
2445 |
+
},
|
2446 |
+
{
|
2447 |
+
"epoch": 1.9,
|
2448 |
+
"learning_rate": 5.973620935231318e-06,
|
2449 |
+
"loss": 0.1834,
|
2450 |
+
"step": 814
|
2451 |
+
},
|
2452 |
+
{
|
2453 |
+
"epoch": 1.9,
|
2454 |
+
"learning_rate": 5.928911484564481e-06,
|
2455 |
+
"loss": 0.1682,
|
2456 |
+
"step": 816
|
2457 |
+
},
|
2458 |
+
{
|
2459 |
+
"epoch": 1.9,
|
2460 |
+
"learning_rate": 5.884299367581607e-06,
|
2461 |
+
"loss": 0.1828,
|
2462 |
+
"step": 818
|
2463 |
+
},
|
2464 |
+
{
|
2465 |
+
"epoch": 1.91,
|
2466 |
+
"learning_rate": 5.8397856508922e-06,
|
2467 |
+
"loss": 0.1802,
|
2468 |
+
"step": 820
|
2469 |
+
},
|
2470 |
+
{
|
2471 |
+
"epoch": 1.91,
|
2472 |
+
"learning_rate": 5.795371398753153e-06,
|
2473 |
+
"loss": 0.1949,
|
2474 |
+
"step": 822
|
2475 |
+
},
|
2476 |
+
{
|
2477 |
+
"epoch": 1.92,
|
2478 |
+
"learning_rate": 5.751057673043316e-06,
|
2479 |
+
"loss": 0.1777,
|
2480 |
+
"step": 824
|
2481 |
+
},
|
2482 |
+
{
|
2483 |
+
"epoch": 1.92,
|
2484 |
+
"learning_rate": 5.706845533238097e-06,
|
2485 |
+
"loss": 0.1728,
|
2486 |
+
"step": 826
|
2487 |
+
},
|
2488 |
+
{
|
2489 |
+
"epoch": 1.93,
|
2490 |
+
"learning_rate": 5.662736036384142e-06,
|
2491 |
+
"loss": 0.1701,
|
2492 |
+
"step": 828
|
2493 |
+
},
|
2494 |
+
{
|
2495 |
+
"epoch": 1.93,
|
2496 |
+
"learning_rate": 5.618730237074048e-06,
|
2497 |
+
"loss": 0.1667,
|
2498 |
+
"step": 830
|
2499 |
+
},
|
2500 |
+
{
|
2501 |
+
"epoch": 1.94,
|
2502 |
+
"learning_rate": 5.574829187421166e-06,
|
2503 |
+
"loss": 0.1746,
|
2504 |
+
"step": 832
|
2505 |
+
},
|
2506 |
+
{
|
2507 |
+
"epoch": 1.94,
|
2508 |
+
"learning_rate": 5.531033937034429e-06,
|
2509 |
+
"loss": 0.1827,
|
2510 |
+
"step": 834
|
2511 |
+
},
|
2512 |
+
{
|
2513 |
+
"epoch": 1.95,
|
2514 |
+
"learning_rate": 5.4873455329932736e-06,
|
2515 |
+
"loss": 0.1769,
|
2516 |
+
"step": 836
|
2517 |
+
},
|
2518 |
+
{
|
2519 |
+
"epoch": 1.95,
|
2520 |
+
"learning_rate": 5.443765019822593e-06,
|
2521 |
+
"loss": 0.1854,
|
2522 |
+
"step": 838
|
2523 |
+
},
|
2524 |
+
{
|
2525 |
+
"epoch": 1.96,
|
2526 |
+
"learning_rate": 5.400293439467781e-06,
|
2527 |
+
"loss": 0.1921,
|
2528 |
+
"step": 840
|
2529 |
+
},
|
2530 |
+
{
|
2531 |
+
"epoch": 1.96,
|
2532 |
+
"learning_rate": 5.356931831269798e-06,
|
2533 |
+
"loss": 0.1815,
|
2534 |
+
"step": 842
|
2535 |
+
},
|
2536 |
+
{
|
2537 |
+
"epoch": 1.97,
|
2538 |
+
"learning_rate": 5.313681231940338e-06,
|
2539 |
+
"loss": 0.1781,
|
2540 |
+
"step": 844
|
2541 |
+
},
|
2542 |
+
{
|
2543 |
+
"epoch": 1.97,
|
2544 |
+
"learning_rate": 5.270542675537034e-06,
|
2545 |
+
"loss": 0.2022,
|
2546 |
+
"step": 846
|
2547 |
+
},
|
2548 |
+
{
|
2549 |
+
"epoch": 1.97,
|
2550 |
+
"learning_rate": 5.227517193438746e-06,
|
2551 |
+
"loss": 0.1866,
|
2552 |
+
"step": 848
|
2553 |
+
},
|
2554 |
+
{
|
2555 |
+
"epoch": 1.98,
|
2556 |
+
"learning_rate": 5.184605814320889e-06,
|
2557 |
+
"loss": 0.1754,
|
2558 |
+
"step": 850
|
2559 |
+
},
|
2560 |
+
{
|
2561 |
+
"epoch": 1.98,
|
2562 |
+
"learning_rate": 5.141809564130847e-06,
|
2563 |
+
"loss": 0.1745,
|
2564 |
+
"step": 852
|
2565 |
+
},
|
2566 |
+
{
|
2567 |
+
"epoch": 1.99,
|
2568 |
+
"learning_rate": 5.099129466063444e-06,
|
2569 |
+
"loss": 0.1803,
|
2570 |
+
"step": 854
|
2571 |
+
},
|
2572 |
+
{
|
2573 |
+
"epoch": 1.99,
|
2574 |
+
"learning_rate": 5.056566540536476e-06,
|
2575 |
+
"loss": 0.1678,
|
2576 |
+
"step": 856
|
2577 |
+
},
|
2578 |
+
{
|
2579 |
+
"epoch": 2.0,
|
2580 |
+
"learning_rate": 5.014121805166321e-06,
|
2581 |
+
"loss": 0.1702,
|
2582 |
+
"step": 858
|
2583 |
+
},
|
2584 |
+
{
|
2585 |
+
"epoch": 2.0,
|
2586 |
+
"learning_rate": 4.971796274743601e-06,
|
2587 |
+
"loss": 0.1313,
|
2588 |
+
"step": 860
|
2589 |
+
},
|
2590 |
+
{
|
2591 |
+
"epoch": 2.01,
|
2592 |
+
"learning_rate": 4.9295909612089265e-06,
|
2593 |
+
"loss": 0.0643,
|
2594 |
+
"step": 862
|
2595 |
+
},
|
2596 |
+
{
|
2597 |
+
"epoch": 2.01,
|
2598 |
+
"learning_rate": 4.887506873628708e-06,
|
2599 |
+
"loss": 0.0624,
|
2600 |
+
"step": 864
|
2601 |
+
},
|
2602 |
+
{
|
2603 |
+
"epoch": 2.02,
|
2604 |
+
"learning_rate": 4.845545018171013e-06,
|
2605 |
+
"loss": 0.0604,
|
2606 |
+
"step": 866
|
2607 |
+
},
|
2608 |
+
{
|
2609 |
+
"epoch": 2.02,
|
2610 |
+
"learning_rate": 4.80370639808152e-06,
|
2611 |
+
"loss": 0.0648,
|
2612 |
+
"step": 868
|
2613 |
+
},
|
2614 |
+
{
|
2615 |
+
"epoch": 2.03,
|
2616 |
+
"learning_rate": 4.7619920136595465e-06,
|
2617 |
+
"loss": 0.0731,
|
2618 |
+
"step": 870
|
2619 |
+
},
|
2620 |
+
{
|
2621 |
+
"epoch": 2.03,
|
2622 |
+
"learning_rate": 4.720402862234105e-06,
|
2623 |
+
"loss": 0.0582,
|
2624 |
+
"step": 872
|
2625 |
+
},
|
2626 |
+
{
|
2627 |
+
"epoch": 2.03,
|
2628 |
+
"learning_rate": 4.678939938140079e-06,
|
2629 |
+
"loss": 0.0601,
|
2630 |
+
"step": 874
|
2631 |
+
},
|
2632 |
+
{
|
2633 |
+
"epoch": 2.04,
|
2634 |
+
"learning_rate": 4.637604232694441e-06,
|
2635 |
+
"loss": 0.0527,
|
2636 |
+
"step": 876
|
2637 |
+
},
|
2638 |
+
{
|
2639 |
+
"epoch": 2.04,
|
2640 |
+
"learning_rate": 4.596396734172559e-06,
|
2641 |
+
"loss": 0.0575,
|
2642 |
+
"step": 878
|
2643 |
+
},
|
2644 |
+
{
|
2645 |
+
"epoch": 2.05,
|
2646 |
+
"learning_rate": 4.555318427784561e-06,
|
2647 |
+
"loss": 0.0578,
|
2648 |
+
"step": 880
|
2649 |
+
},
|
2650 |
+
{
|
2651 |
+
"epoch": 2.05,
|
2652 |
+
"learning_rate": 4.514370295651781e-06,
|
2653 |
+
"loss": 0.0543,
|
2654 |
+
"step": 882
|
2655 |
+
},
|
2656 |
+
{
|
2657 |
+
"epoch": 2.06,
|
2658 |
+
"learning_rate": 4.473553316783282e-06,
|
2659 |
+
"loss": 0.0547,
|
2660 |
+
"step": 884
|
2661 |
+
},
|
2662 |
+
{
|
2663 |
+
"epoch": 2.06,
|
2664 |
+
"learning_rate": 4.432868467052449e-06,
|
2665 |
+
"loss": 0.053,
|
2666 |
+
"step": 886
|
2667 |
+
},
|
2668 |
+
{
|
2669 |
+
"epoch": 2.07,
|
2670 |
+
"learning_rate": 4.392316719173651e-06,
|
2671 |
+
"loss": 0.0587,
|
2672 |
+
"step": 888
|
2673 |
+
},
|
2674 |
+
{
|
2675 |
+
"epoch": 2.07,
|
2676 |
+
"learning_rate": 4.351899042678993e-06,
|
2677 |
+
"loss": 0.0628,
|
2678 |
+
"step": 890
|
2679 |
+
},
|
2680 |
+
{
|
2681 |
+
"epoch": 2.08,
|
2682 |
+
"learning_rate": 4.311616403895126e-06,
|
2683 |
+
"loss": 0.0582,
|
2684 |
+
"step": 892
|
2685 |
+
},
|
2686 |
+
{
|
2687 |
+
"epoch": 2.08,
|
2688 |
+
"learning_rate": 4.271469765920163e-06,
|
2689 |
+
"loss": 0.0578,
|
2690 |
+
"step": 894
|
2691 |
+
},
|
2692 |
+
{
|
2693 |
+
"epoch": 2.09,
|
2694 |
+
"learning_rate": 4.231460088600626e-06,
|
2695 |
+
"loss": 0.064,
|
2696 |
+
"step": 896
|
2697 |
+
},
|
2698 |
+
{
|
2699 |
+
"epoch": 2.09,
|
2700 |
+
"learning_rate": 4.191588328508518e-06,
|
2701 |
+
"loss": 0.0525,
|
2702 |
+
"step": 898
|
2703 |
+
},
|
2704 |
+
{
|
2705 |
+
"epoch": 2.1,
|
2706 |
+
"learning_rate": 4.1518554389184416e-06,
|
2707 |
+
"loss": 0.0584,
|
2708 |
+
"step": 900
|
2709 |
+
},
|
2710 |
+
{
|
2711 |
+
"epoch": 2.1,
|
2712 |
+
"learning_rate": 4.1122623697848164e-06,
|
2713 |
+
"loss": 0.0621,
|
2714 |
+
"step": 902
|
2715 |
+
},
|
2716 |
+
{
|
2717 |
+
"epoch": 2.1,
|
2718 |
+
"learning_rate": 4.0728100677191585e-06,
|
2719 |
+
"loss": 0.0563,
|
2720 |
+
"step": 904
|
2721 |
+
},
|
2722 |
+
{
|
2723 |
+
"epoch": 2.11,
|
2724 |
+
"learning_rate": 4.033499475967451e-06,
|
2725 |
+
"loss": 0.0598,
|
2726 |
+
"step": 906
|
2727 |
+
},
|
2728 |
+
{
|
2729 |
+
"epoch": 2.11,
|
2730 |
+
"learning_rate": 3.994331534387602e-06,
|
2731 |
+
"loss": 0.0528,
|
2732 |
+
"step": 908
|
2733 |
+
},
|
2734 |
+
{
|
2735 |
+
"epoch": 2.12,
|
2736 |
+
"learning_rate": 3.95530717942696e-06,
|
2737 |
+
"loss": 0.0588,
|
2738 |
+
"step": 910
|
2739 |
+
},
|
2740 |
+
{
|
2741 |
+
"epoch": 2.12,
|
2742 |
+
"learning_rate": 3.916427344099928e-06,
|
2743 |
+
"loss": 0.0668,
|
2744 |
+
"step": 912
|
2745 |
+
},
|
2746 |
+
{
|
2747 |
+
"epoch": 2.13,
|
2748 |
+
"learning_rate": 3.877692957965663e-06,
|
2749 |
+
"loss": 0.0569,
|
2750 |
+
"step": 914
|
2751 |
+
},
|
2752 |
+
{
|
2753 |
+
"epoch": 2.13,
|
2754 |
+
"learning_rate": 3.839104947105847e-06,
|
2755 |
+
"loss": 0.0588,
|
2756 |
+
"step": 916
|
2757 |
+
},
|
2758 |
+
{
|
2759 |
+
"epoch": 2.14,
|
2760 |
+
"learning_rate": 3.8006642341025456e-06,
|
2761 |
+
"loss": 0.0594,
|
2762 |
+
"step": 918
|
2763 |
+
},
|
2764 |
+
{
|
2765 |
+
"epoch": 2.14,
|
2766 |
+
"learning_rate": 3.762371738016153e-06,
|
2767 |
+
"loss": 0.059,
|
2768 |
+
"step": 920
|
2769 |
+
},
|
2770 |
+
{
|
2771 |
+
"epoch": 2.15,
|
2772 |
+
"learning_rate": 3.72422837436341e-06,
|
2773 |
+
"loss": 0.0523,
|
2774 |
+
"step": 922
|
2775 |
+
},
|
2776 |
+
{
|
2777 |
+
"epoch": 2.15,
|
2778 |
+
"learning_rate": 3.686235055095536e-06,
|
2779 |
+
"loss": 0.0538,
|
2780 |
+
"step": 924
|
2781 |
+
},
|
2782 |
+
{
|
2783 |
+
"epoch": 2.16,
|
2784 |
+
"learning_rate": 3.648392688576401e-06,
|
2785 |
+
"loss": 0.0586,
|
2786 |
+
"step": 926
|
2787 |
+
},
|
2788 |
+
{
|
2789 |
+
"epoch": 2.16,
|
2790 |
+
"learning_rate": 3.610702179560821e-06,
|
2791 |
+
"loss": 0.055,
|
2792 |
+
"step": 928
|
2793 |
+
},
|
2794 |
+
{
|
2795 |
+
"epoch": 2.17,
|
2796 |
+
"learning_rate": 3.573164429172924e-06,
|
2797 |
+
"loss": 0.0524,
|
2798 |
+
"step": 930
|
2799 |
+
},
|
2800 |
+
{
|
2801 |
+
"epoch": 2.17,
|
2802 |
+
"learning_rate": 3.5357803348846087e-06,
|
2803 |
+
"loss": 0.0618,
|
2804 |
+
"step": 932
|
2805 |
+
},
|
2806 |
+
{
|
2807 |
+
"epoch": 2.17,
|
2808 |
+
"learning_rate": 3.498550790494083e-06,
|
2809 |
+
"loss": 0.0527,
|
2810 |
+
"step": 934
|
2811 |
+
},
|
2812 |
+
{
|
2813 |
+
"epoch": 2.18,
|
2814 |
+
"learning_rate": 3.461476686104495e-06,
|
2815 |
+
"loss": 0.0541,
|
2816 |
+
"step": 936
|
2817 |
+
},
|
2818 |
+
{
|
2819 |
+
"epoch": 2.18,
|
2820 |
+
"learning_rate": 3.424558908102653e-06,
|
2821 |
+
"loss": 0.0579,
|
2822 |
+
"step": 938
|
2823 |
+
},
|
2824 |
+
{
|
2825 |
+
"epoch": 2.19,
|
2826 |
+
"learning_rate": 3.387798339137837e-06,
|
2827 |
+
"loss": 0.0567,
|
2828 |
+
"step": 940
|
2829 |
+
},
|
2830 |
+
{
|
2831 |
+
"epoch": 2.19,
|
2832 |
+
"learning_rate": 3.3511958581006874e-06,
|
2833 |
+
"loss": 0.0519,
|
2834 |
+
"step": 942
|
2835 |
+
},
|
2836 |
+
{
|
2837 |
+
"epoch": 2.2,
|
2838 |
+
"learning_rate": 3.314752340102201e-06,
|
2839 |
+
"loss": 0.0573,
|
2840 |
+
"step": 944
|
2841 |
+
},
|
2842 |
+
{
|
2843 |
+
"epoch": 2.2,
|
2844 |
+
"learning_rate": 3.278468656452798e-06,
|
2845 |
+
"loss": 0.061,
|
2846 |
+
"step": 946
|
2847 |
+
},
|
2848 |
+
{
|
2849 |
+
"epoch": 2.21,
|
2850 |
+
"learning_rate": 3.242345674641508e-06,
|
2851 |
+
"loss": 0.0611,
|
2852 |
+
"step": 948
|
2853 |
+
},
|
2854 |
+
{
|
2855 |
+
"epoch": 2.21,
|
2856 |
+
"learning_rate": 3.2063842583152095e-06,
|
2857 |
+
"loss": 0.0604,
|
2858 |
+
"step": 950
|
2859 |
+
},
|
2860 |
+
{
|
2861 |
+
"epoch": 2.22,
|
2862 |
+
"learning_rate": 3.1705852672579853e-06,
|
2863 |
+
"loss": 0.0556,
|
2864 |
+
"step": 952
|
2865 |
+
},
|
2866 |
+
{
|
2867 |
+
"epoch": 2.22,
|
2868 |
+
"learning_rate": 3.134949557370587e-06,
|
2869 |
+
"loss": 0.0557,
|
2870 |
+
"step": 954
|
2871 |
+
},
|
2872 |
+
{
|
2873 |
+
"epoch": 2.23,
|
2874 |
+
"learning_rate": 3.099477980649941e-06,
|
2875 |
+
"loss": 0.0539,
|
2876 |
+
"step": 956
|
2877 |
+
},
|
2878 |
+
{
|
2879 |
+
"epoch": 2.23,
|
2880 |
+
"learning_rate": 3.0641713851687994e-06,
|
2881 |
+
"loss": 0.061,
|
2882 |
+
"step": 958
|
2883 |
+
},
|
2884 |
+
{
|
2885 |
+
"epoch": 2.24,
|
2886 |
+
"learning_rate": 3.0290306150554573e-06,
|
2887 |
+
"loss": 0.0566,
|
2888 |
+
"step": 960
|
2889 |
+
},
|
2890 |
+
{
|
2891 |
+
"epoch": 2.24,
|
2892 |
+
"learning_rate": 2.994056510473571e-06,
|
2893 |
+
"loss": 0.0631,
|
2894 |
+
"step": 962
|
2895 |
+
},
|
2896 |
+
{
|
2897 |
+
"epoch": 2.24,
|
2898 |
+
"learning_rate": 2.959249907602071e-06,
|
2899 |
+
"loss": 0.052,
|
2900 |
+
"step": 964
|
2901 |
+
},
|
2902 |
+
{
|
2903 |
+
"epoch": 2.25,
|
2904 |
+
"learning_rate": 2.9246116386151704e-06,
|
2905 |
+
"loss": 0.0553,
|
2906 |
+
"step": 966
|
2907 |
+
},
|
2908 |
+
{
|
2909 |
+
"epoch": 2.25,
|
2910 |
+
"learning_rate": 2.890142531662471e-06,
|
2911 |
+
"loss": 0.0578,
|
2912 |
+
"step": 968
|
2913 |
+
},
|
2914 |
+
{
|
2915 |
+
"epoch": 2.26,
|
2916 |
+
"learning_rate": 2.8558434108491585e-06,
|
2917 |
+
"loss": 0.0522,
|
2918 |
+
"step": 970
|
2919 |
+
},
|
2920 |
+
{
|
2921 |
+
"epoch": 2.26,
|
2922 |
+
"learning_rate": 2.8217150962163044e-06,
|
2923 |
+
"loss": 0.0575,
|
2924 |
+
"step": 972
|
2925 |
+
},
|
2926 |
+
{
|
2927 |
+
"epoch": 2.27,
|
2928 |
+
"learning_rate": 2.7877584037212555e-06,
|
2929 |
+
"loss": 0.0615,
|
2930 |
+
"step": 974
|
2931 |
+
},
|
2932 |
+
{
|
2933 |
+
"epoch": 2.27,
|
2934 |
+
"learning_rate": 2.75397414521813e-06,
|
2935 |
+
"loss": 0.0512,
|
2936 |
+
"step": 976
|
2937 |
+
},
|
2938 |
+
{
|
2939 |
+
"epoch": 2.28,
|
2940 |
+
"learning_rate": 2.720363128438408e-06,
|
2941 |
+
"loss": 0.0595,
|
2942 |
+
"step": 978
|
2943 |
+
},
|
2944 |
+
{
|
2945 |
+
"epoch": 2.28,
|
2946 |
+
"learning_rate": 2.6869261569716134e-06,
|
2947 |
+
"loss": 0.0557,
|
2948 |
+
"step": 980
|
2949 |
+
},
|
2950 |
+
{
|
2951 |
+
"epoch": 2.29,
|
2952 |
+
"learning_rate": 2.6536640302461036e-06,
|
2953 |
+
"loss": 0.0605,
|
2954 |
+
"step": 982
|
2955 |
+
},
|
2956 |
+
{
|
2957 |
+
"epoch": 2.29,
|
2958 |
+
"learning_rate": 2.6205775435099624e-06,
|
2959 |
+
"loss": 0.0548,
|
2960 |
+
"step": 984
|
2961 |
+
},
|
2962 |
+
{
|
2963 |
+
"epoch": 2.3,
|
2964 |
+
"learning_rate": 2.5876674878119735e-06,
|
2965 |
+
"loss": 0.0544,
|
2966 |
+
"step": 986
|
2967 |
+
},
|
2968 |
+
{
|
2969 |
+
"epoch": 2.3,
|
2970 |
+
"learning_rate": 2.554934649982731e-06,
|
2971 |
+
"loss": 0.0566,
|
2972 |
+
"step": 988
|
2973 |
+
},
|
2974 |
+
{
|
2975 |
+
"epoch": 2.31,
|
2976 |
+
"learning_rate": 2.5223798126158004e-06,
|
2977 |
+
"loss": 0.055,
|
2978 |
+
"step": 990
|
2979 |
+
},
|
2980 |
+
{
|
2981 |
+
"epoch": 2.31,
|
2982 |
+
"learning_rate": 2.490003754049024e-06,
|
2983 |
+
"loss": 0.0545,
|
2984 |
+
"step": 992
|
2985 |
+
},
|
2986 |
+
{
|
2987 |
+
"epoch": 2.31,
|
2988 |
+
"learning_rate": 2.457807248345908e-06,
|
2989 |
+
"loss": 0.0611,
|
2990 |
+
"step": 994
|
2991 |
+
},
|
2992 |
+
{
|
2993 |
+
"epoch": 2.32,
|
2994 |
+
"learning_rate": 2.425791065277119e-06,
|
2995 |
+
"loss": 0.0558,
|
2996 |
+
"step": 996
|
2997 |
+
},
|
2998 |
+
{
|
2999 |
+
"epoch": 2.32,
|
3000 |
+
"learning_rate": 2.393955970302072e-06,
|
3001 |
+
"loss": 0.0699,
|
3002 |
+
"step": 998
|
3003 |
+
},
|
3004 |
+
{
|
3005 |
+
"epoch": 2.33,
|
3006 |
+
"learning_rate": 2.362302724550639e-06,
|
3007 |
+
"loss": 0.0589,
|
3008 |
+
"step": 1000
|
3009 |
+
},
|
3010 |
+
{
|
3011 |
+
"epoch": 2.33,
|
3012 |
+
"learning_rate": 2.3308320848049436e-06,
|
3013 |
+
"loss": 0.0584,
|
3014 |
+
"step": 1002
|
3015 |
+
},
|
3016 |
+
{
|
3017 |
+
"epoch": 2.34,
|
3018 |
+
"learning_rate": 2.299544803481274e-06,
|
3019 |
+
"loss": 0.0524,
|
3020 |
+
"step": 1004
|
3021 |
+
},
|
3022 |
+
{
|
3023 |
+
"epoch": 2.34,
|
3024 |
+
"learning_rate": 2.2684416286120846e-06,
|
3025 |
+
"loss": 0.0595,
|
3026 |
+
"step": 1006
|
3027 |
+
},
|
3028 |
+
{
|
3029 |
+
"epoch": 2.35,
|
3030 |
+
"learning_rate": 2.23752330382813e-06,
|
3031 |
+
"loss": 0.0551,
|
3032 |
+
"step": 1008
|
3033 |
+
},
|
3034 |
+
{
|
3035 |
+
"epoch": 2.35,
|
3036 |
+
"learning_rate": 2.20679056834066e-06,
|
3037 |
+
"loss": 0.0523,
|
3038 |
+
"step": 1010
|
3039 |
+
},
|
3040 |
+
{
|
3041 |
+
"epoch": 2.36,
|
3042 |
+
"learning_rate": 2.176244156923768e-06,
|
3043 |
+
"loss": 0.0913,
|
3044 |
+
"step": 1012
|
3045 |
+
},
|
3046 |
+
{
|
3047 |
+
"epoch": 2.36,
|
3048 |
+
"learning_rate": 2.1458847998968123e-06,
|
3049 |
+
"loss": 0.0561,
|
3050 |
+
"step": 1014
|
3051 |
+
},
|
3052 |
+
{
|
3053 |
+
"epoch": 2.37,
|
3054 |
+
"learning_rate": 2.115713223106959e-06,
|
3055 |
+
"loss": 0.0562,
|
3056 |
+
"step": 1016
|
3057 |
+
},
|
3058 |
+
{
|
3059 |
+
"epoch": 2.37,
|
3060 |
+
"learning_rate": 2.0857301479118276e-06,
|
3061 |
+
"loss": 0.0574,
|
3062 |
+
"step": 1018
|
3063 |
+
},
|
3064 |
+
{
|
3065 |
+
"epoch": 2.37,
|
3066 |
+
"learning_rate": 2.0559362911622438e-06,
|
3067 |
+
"loss": 0.0641,
|
3068 |
+
"step": 1020
|
3069 |
+
},
|
3070 |
+
{
|
3071 |
+
"epoch": 2.38,
|
3072 |
+
"learning_rate": 2.026332365185102e-06,
|
3073 |
+
"loss": 0.0569,
|
3074 |
+
"step": 1022
|
3075 |
+
},
|
3076 |
+
{
|
3077 |
+
"epoch": 2.38,
|
3078 |
+
"learning_rate": 1.996919077766334e-06,
|
3079 |
+
"loss": 0.0656,
|
3080 |
+
"step": 1024
|
3081 |
+
},
|
3082 |
+
{
|
3083 |
+
"epoch": 2.39,
|
3084 |
+
"learning_rate": 1.967697132133981e-06,
|
3085 |
+
"loss": 0.0508,
|
3086 |
+
"step": 1026
|
3087 |
+
},
|
3088 |
+
{
|
3089 |
+
"epoch": 2.39,
|
3090 |
+
"learning_rate": 1.9386672269413976e-06,
|
3091 |
+
"loss": 0.0533,
|
3092 |
+
"step": 1028
|
3093 |
+
},
|
3094 |
+
{
|
3095 |
+
"epoch": 2.4,
|
3096 |
+
"learning_rate": 1.9098300562505266e-06,
|
3097 |
+
"loss": 0.0555,
|
3098 |
+
"step": 1030
|
3099 |
+
},
|
3100 |
+
{
|
3101 |
+
"epoch": 2.4,
|
3102 |
+
"learning_rate": 1.8811863095153182e-06,
|
3103 |
+
"loss": 0.0522,
|
3104 |
+
"step": 1032
|
3105 |
+
},
|
3106 |
+
{
|
3107 |
+
"epoch": 2.41,
|
3108 |
+
"learning_rate": 1.852736671565244e-06,
|
3109 |
+
"loss": 0.0541,
|
3110 |
+
"step": 1034
|
3111 |
+
},
|
3112 |
+
{
|
3113 |
+
"epoch": 2.41,
|
3114 |
+
"learning_rate": 1.8244818225889183e-06,
|
3115 |
+
"loss": 0.053,
|
3116 |
+
"step": 1036
|
3117 |
+
},
|
3118 |
+
{
|
3119 |
+
"epoch": 2.42,
|
3120 |
+
"learning_rate": 1.7964224381178474e-06,
|
3121 |
+
"loss": 0.0514,
|
3122 |
+
"step": 1038
|
3123 |
+
},
|
3124 |
+
{
|
3125 |
+
"epoch": 2.42,
|
3126 |
+
"learning_rate": 1.768559189010267e-06,
|
3127 |
+
"loss": 0.0513,
|
3128 |
+
"step": 1040
|
3129 |
+
},
|
3130 |
+
{
|
3131 |
+
"epoch": 2.43,
|
3132 |
+
"learning_rate": 1.7408927414351051e-06,
|
3133 |
+
"loss": 0.0546,
|
3134 |
+
"step": 1042
|
3135 |
+
},
|
3136 |
+
{
|
3137 |
+
"epoch": 2.43,
|
3138 |
+
"learning_rate": 1.7134237568560619e-06,
|
3139 |
+
"loss": 0.0515,
|
3140 |
+
"step": 1044
|
3141 |
+
},
|
3142 |
+
{
|
3143 |
+
"epoch": 2.44,
|
3144 |
+
"learning_rate": 1.6861528920157877e-06,
|
3145 |
+
"loss": 0.0559,
|
3146 |
+
"step": 1046
|
3147 |
+
},
|
3148 |
+
{
|
3149 |
+
"epoch": 2.44,
|
3150 |
+
"learning_rate": 1.6590807989201841e-06,
|
3151 |
+
"loss": 0.0594,
|
3152 |
+
"step": 1048
|
3153 |
+
},
|
3154 |
+
{
|
3155 |
+
"epoch": 2.44,
|
3156 |
+
"learning_rate": 1.632208124822815e-06,
|
3157 |
+
"loss": 0.0527,
|
3158 |
+
"step": 1050
|
3159 |
+
},
|
3160 |
+
{
|
3161 |
+
"epoch": 2.45,
|
3162 |
+
"learning_rate": 1.6055355122094352e-06,
|
3163 |
+
"loss": 0.0503,
|
3164 |
+
"step": 1052
|
3165 |
+
},
|
3166 |
+
{
|
3167 |
+
"epoch": 2.45,
|
3168 |
+
"learning_rate": 1.579063598782622e-06,
|
3169 |
+
"loss": 0.0534,
|
3170 |
+
"step": 1054
|
3171 |
+
},
|
3172 |
+
{
|
3173 |
+
"epoch": 2.46,
|
3174 |
+
"learning_rate": 1.5527930174465356e-06,
|
3175 |
+
"loss": 0.0639,
|
3176 |
+
"step": 1056
|
3177 |
+
},
|
3178 |
+
{
|
3179 |
+
"epoch": 2.46,
|
3180 |
+
"learning_rate": 1.5267243962917833e-06,
|
3181 |
+
"loss": 0.0575,
|
3182 |
+
"step": 1058
|
3183 |
+
},
|
3184 |
+
{
|
3185 |
+
"epoch": 2.47,
|
3186 |
+
"learning_rate": 1.5008583585804048e-06,
|
3187 |
+
"loss": 0.052,
|
3188 |
+
"step": 1060
|
3189 |
+
},
|
3190 |
+
{
|
3191 |
+
"epoch": 2.47,
|
3192 |
+
"learning_rate": 1.4751955227309722e-06,
|
3193 |
+
"loss": 0.0532,
|
3194 |
+
"step": 1062
|
3195 |
+
},
|
3196 |
+
{
|
3197 |
+
"epoch": 2.48,
|
3198 |
+
"learning_rate": 1.4497365023038012e-06,
|
3199 |
+
"loss": 0.0542,
|
3200 |
+
"step": 1064
|
3201 |
+
},
|
3202 |
+
{
|
3203 |
+
"epoch": 2.48,
|
3204 |
+
"learning_rate": 1.4244819059862824e-06,
|
3205 |
+
"loss": 0.0525,
|
3206 |
+
"step": 1066
|
3207 |
+
},
|
3208 |
+
{
|
3209 |
+
"epoch": 2.49,
|
3210 |
+
"learning_rate": 1.399432337578327e-06,
|
3211 |
+
"loss": 0.0588,
|
3212 |
+
"step": 1068
|
3213 |
+
},
|
3214 |
+
{
|
3215 |
+
"epoch": 2.49,
|
3216 |
+
"learning_rate": 1.3745883959779415e-06,
|
3217 |
+
"loss": 0.0552,
|
3218 |
+
"step": 1070
|
3219 |
+
},
|
3220 |
+
{
|
3221 |
+
"epoch": 2.5,
|
3222 |
+
"learning_rate": 1.3499506751668933e-06,
|
3223 |
+
"loss": 0.0535,
|
3224 |
+
"step": 1072
|
3225 |
+
},
|
3226 |
+
{
|
3227 |
+
"epoch": 2.5,
|
3228 |
+
"learning_rate": 1.325519764196519e-06,
|
3229 |
+
"loss": 0.0496,
|
3230 |
+
"step": 1074
|
3231 |
+
},
|
3232 |
+
{
|
3233 |
+
"epoch": 2.51,
|
3234 |
+
"learning_rate": 1.301296247173638e-06,
|
3235 |
+
"loss": 0.0536,
|
3236 |
+
"step": 1076
|
3237 |
+
},
|
3238 |
+
{
|
3239 |
+
"epoch": 2.51,
|
3240 |
+
"learning_rate": 1.2772807032465895e-06,
|
3241 |
+
"loss": 0.0546,
|
3242 |
+
"step": 1078
|
3243 |
+
},
|
3244 |
+
{
|
3245 |
+
"epoch": 2.51,
|
3246 |
+
"learning_rate": 1.2534737065913839e-06,
|
3247 |
+
"loss": 0.062,
|
3248 |
+
"step": 1080
|
3249 |
+
},
|
3250 |
+
{
|
3251 |
+
"epoch": 2.52,
|
3252 |
+
"learning_rate": 1.229875826397976e-06,
|
3253 |
+
"loss": 0.0482,
|
3254 |
+
"step": 1082
|
3255 |
+
},
|
3256 |
+
{
|
3257 |
+
"epoch": 2.52,
|
3258 |
+
"learning_rate": 1.2064876268566572e-06,
|
3259 |
+
"loss": 0.0526,
|
3260 |
+
"step": 1084
|
3261 |
+
},
|
3262 |
+
{
|
3263 |
+
"epoch": 2.53,
|
3264 |
+
"learning_rate": 1.1833096671445644e-06,
|
3265 |
+
"loss": 0.0513,
|
3266 |
+
"step": 1086
|
3267 |
+
},
|
3268 |
+
{
|
3269 |
+
"epoch": 2.53,
|
3270 |
+
"learning_rate": 1.1603425014123126e-06,
|
3271 |
+
"loss": 0.06,
|
3272 |
+
"step": 1088
|
3273 |
+
},
|
3274 |
+
{
|
3275 |
+
"epoch": 2.54,
|
3276 |
+
"learning_rate": 1.1375866787707435e-06,
|
3277 |
+
"loss": 0.0553,
|
3278 |
+
"step": 1090
|
3279 |
+
},
|
3280 |
+
{
|
3281 |
+
"epoch": 2.54,
|
3282 |
+
"learning_rate": 1.1150427432778078e-06,
|
3283 |
+
"loss": 0.0504,
|
3284 |
+
"step": 1092
|
3285 |
+
},
|
3286 |
+
{
|
3287 |
+
"epoch": 2.55,
|
3288 |
+
"learning_rate": 1.0927112339255374e-06,
|
3289 |
+
"loss": 0.0512,
|
3290 |
+
"step": 1094
|
3291 |
+
},
|
3292 |
+
{
|
3293 |
+
"epoch": 2.55,
|
3294 |
+
"learning_rate": 1.0705926846271787e-06,
|
3295 |
+
"loss": 0.05,
|
3296 |
+
"step": 1096
|
3297 |
+
},
|
3298 |
+
{
|
3299 |
+
"epoch": 2.56,
|
3300 |
+
"learning_rate": 1.0486876242044153e-06,
|
3301 |
+
"loss": 0.0577,
|
3302 |
+
"step": 1098
|
3303 |
+
},
|
3304 |
+
{
|
3305 |
+
"epoch": 2.56,
|
3306 |
+
"learning_rate": 1.0269965763747292e-06,
|
3307 |
+
"loss": 0.0533,
|
3308 |
+
"step": 1100
|
3309 |
+
},
|
3310 |
+
{
|
3311 |
+
"epoch": 2.57,
|
3312 |
+
"learning_rate": 1.0055200597388793e-06,
|
3313 |
+
"loss": 0.0556,
|
3314 |
+
"step": 1102
|
3315 |
+
},
|
3316 |
+
{
|
3317 |
+
"epoch": 2.57,
|
3318 |
+
"learning_rate": 9.84258587768504e-07,
|
3319 |
+
"loss": 0.0501,
|
3320 |
+
"step": 1104
|
3321 |
+
},
|
3322 |
+
{
|
3323 |
+
"epoch": 2.58,
|
3324 |
+
"learning_rate": 9.632126687938392e-07,
|
3325 |
+
"loss": 0.0472,
|
3326 |
+
"step": 1106
|
3327 |
+
},
|
3328 |
+
{
|
3329 |
+
"epoch": 2.58,
|
3330 |
+
"learning_rate": 9.423828059915685e-07,
|
3331 |
+
"loss": 0.0637,
|
3332 |
+
"step": 1108
|
3333 |
+
},
|
3334 |
+
{
|
3335 |
+
"epoch": 2.58,
|
3336 |
+
"learning_rate": 9.217694973728009e-07,
|
3337 |
+
"loss": 0.0508,
|
3338 |
+
"step": 1110
|
3339 |
+
},
|
3340 |
+
{
|
3341 |
+
"epoch": 2.59,
|
3342 |
+
"learning_rate": 9.013732357711469e-07,
|
3343 |
+
"loss": 0.0614,
|
3344 |
+
"step": 1112
|
3345 |
+
},
|
3346 |
+
{
|
3347 |
+
"epoch": 2.59,
|
3348 |
+
"learning_rate": 8.811945088309493e-07,
|
3349 |
+
"loss": 0.0534,
|
3350 |
+
"step": 1114
|
3351 |
+
},
|
3352 |
+
{
|
3353 |
+
"epoch": 2.6,
|
3354 |
+
"learning_rate": 8.612337989956199e-07,
|
3355 |
+
"loss": 0.0569,
|
3356 |
+
"step": 1116
|
3357 |
+
},
|
3358 |
+
{
|
3359 |
+
"epoch": 2.6,
|
3360 |
+
"learning_rate": 8.414915834961035e-07,
|
3361 |
+
"loss": 0.053,
|
3362 |
+
"step": 1118
|
3363 |
+
},
|
3364 |
+
{
|
3365 |
+
"epoch": 2.61,
|
3366 |
+
"learning_rate": 8.219683343394691e-07,
|
3367 |
+
"loss": 0.0554,
|
3368 |
+
"step": 1120
|
3369 |
+
},
|
3370 |
+
{
|
3371 |
+
"epoch": 2.61,
|
3372 |
+
"learning_rate": 8.0266451829763e-07,
|
3373 |
+
"loss": 0.0538,
|
3374 |
+
"step": 1122
|
3375 |
+
},
|
3376 |
+
{
|
3377 |
+
"epoch": 2.62,
|
3378 |
+
"learning_rate": 7.835805968961762e-07,
|
3379 |
+
"loss": 0.0529,
|
3380 |
+
"step": 1124
|
3381 |
+
},
|
3382 |
+
{
|
3383 |
+
"epoch": 2.62,
|
3384 |
+
"learning_rate": 7.647170264033422e-07,
|
3385 |
+
"loss": 0.0535,
|
3386 |
+
"step": 1126
|
3387 |
+
},
|
3388 |
+
{
|
3389 |
+
"epoch": 2.63,
|
3390 |
+
"learning_rate": 7.460742578191016e-07,
|
3391 |
+
"loss": 0.0457,
|
3392 |
+
"step": 1128
|
3393 |
+
},
|
3394 |
+
{
|
3395 |
+
"epoch": 2.63,
|
3396 |
+
"learning_rate": 7.276527368643793e-07,
|
3397 |
+
"loss": 0.0531,
|
3398 |
+
"step": 1130
|
3399 |
+
},
|
3400 |
+
{
|
3401 |
+
"epoch": 2.64,
|
3402 |
+
"learning_rate": 7.094529039704013e-07,
|
3403 |
+
"loss": 0.052,
|
3404 |
+
"step": 1132
|
3405 |
+
},
|
3406 |
+
{
|
3407 |
+
"epoch": 2.64,
|
3408 |
+
"learning_rate": 6.914751942681585e-07,
|
3409 |
+
"loss": 0.0527,
|
3410 |
+
"step": 1134
|
3411 |
+
},
|
3412 |
+
{
|
3413 |
+
"epoch": 2.64,
|
3414 |
+
"learning_rate": 6.737200375780073e-07,
|
3415 |
+
"loss": 0.0555,
|
3416 |
+
"step": 1136
|
3417 |
+
},
|
3418 |
+
{
|
3419 |
+
"epoch": 2.65,
|
3420 |
+
"learning_rate": 6.561878583993897e-07,
|
3421 |
+
"loss": 0.0502,
|
3422 |
+
"step": 1138
|
3423 |
+
},
|
3424 |
+
{
|
3425 |
+
"epoch": 2.65,
|
3426 |
+
"learning_rate": 6.388790759006902e-07,
|
3427 |
+
"loss": 0.0502,
|
3428 |
+
"step": 1140
|
3429 |
+
},
|
3430 |
+
{
|
3431 |
+
"epoch": 2.66,
|
3432 |
+
"learning_rate": 6.217941039092068e-07,
|
3433 |
+
"loss": 0.0602,
|
3434 |
+
"step": 1142
|
3435 |
+
},
|
3436 |
+
{
|
3437 |
+
"epoch": 2.66,
|
3438 |
+
"learning_rate": 6.049333509012611e-07,
|
3439 |
+
"loss": 0.0564,
|
3440 |
+
"step": 1144
|
3441 |
+
},
|
3442 |
+
{
|
3443 |
+
"epoch": 2.67,
|
3444 |
+
"learning_rate": 5.882972199924353e-07,
|
3445 |
+
"loss": 0.0578,
|
3446 |
+
"step": 1146
|
3447 |
+
},
|
3448 |
+
{
|
3449 |
+
"epoch": 2.67,
|
3450 |
+
"learning_rate": 5.718861089279249e-07,
|
3451 |
+
"loss": 0.0553,
|
3452 |
+
"step": 1148
|
3453 |
+
},
|
3454 |
+
{
|
3455 |
+
"epoch": 2.68,
|
3456 |
+
"learning_rate": 5.557004100730357e-07,
|
3457 |
+
"loss": 0.0531,
|
3458 |
+
"step": 1150
|
3459 |
+
},
|
3460 |
+
{
|
3461 |
+
"epoch": 2.68,
|
3462 |
+
"learning_rate": 5.39740510403809e-07,
|
3463 |
+
"loss": 0.0499,
|
3464 |
+
"step": 1152
|
3465 |
+
},
|
3466 |
+
{
|
3467 |
+
"epoch": 2.69,
|
3468 |
+
"learning_rate": 5.240067914977554e-07,
|
3469 |
+
"loss": 0.054,
|
3470 |
+
"step": 1154
|
3471 |
+
},
|
3472 |
+
{
|
3473 |
+
"epoch": 2.69,
|
3474 |
+
"learning_rate": 5.084996295247402e-07,
|
3475 |
+
"loss": 0.0512,
|
3476 |
+
"step": 1156
|
3477 |
+
},
|
3478 |
+
{
|
3479 |
+
"epoch": 2.7,
|
3480 |
+
"learning_rate": 4.932193952379915e-07,
|
3481 |
+
"loss": 0.0537,
|
3482 |
+
"step": 1158
|
3483 |
+
},
|
3484 |
+
{
|
3485 |
+
"epoch": 2.7,
|
3486 |
+
"learning_rate": 4.781664539652319e-07,
|
3487 |
+
"loss": 0.0541,
|
3488 |
+
"step": 1160
|
3489 |
+
},
|
3490 |
+
{
|
3491 |
+
"epoch": 2.71,
|
3492 |
+
"learning_rate": 4.633411655999431e-07,
|
3493 |
+
"loss": 0.0515,
|
3494 |
+
"step": 1162
|
3495 |
+
},
|
3496 |
+
{
|
3497 |
+
"epoch": 2.71,
|
3498 |
+
"learning_rate": 4.487438845927683e-07,
|
3499 |
+
"loss": 0.054,
|
3500 |
+
"step": 1164
|
3501 |
+
},
|
3502 |
+
{
|
3503 |
+
"epoch": 2.71,
|
3504 |
+
"learning_rate": 4.34374959943028e-07,
|
3505 |
+
"loss": 0.0516,
|
3506 |
+
"step": 1166
|
3507 |
+
},
|
3508 |
+
{
|
3509 |
+
"epoch": 2.72,
|
3510 |
+
"learning_rate": 4.202347351903857e-07,
|
3511 |
+
"loss": 0.0551,
|
3512 |
+
"step": 1168
|
3513 |
+
},
|
3514 |
+
{
|
3515 |
+
"epoch": 2.72,
|
3516 |
+
"learning_rate": 4.063235484066275e-07,
|
3517 |
+
"loss": 0.0498,
|
3518 |
+
"step": 1170
|
3519 |
+
},
|
3520 |
+
{
|
3521 |
+
"epoch": 2.73,
|
3522 |
+
"learning_rate": 3.9264173218758083e-07,
|
3523 |
+
"loss": 0.0523,
|
3524 |
+
"step": 1172
|
3525 |
+
},
|
3526 |
+
{
|
3527 |
+
"epoch": 2.73,
|
3528 |
+
"learning_rate": 3.791896136451656e-07,
|
3529 |
+
"loss": 0.0535,
|
3530 |
+
"step": 1174
|
3531 |
+
},
|
3532 |
+
{
|
3533 |
+
"epoch": 2.74,
|
3534 |
+
"learning_rate": 3.6596751439957003e-07,
|
3535 |
+
"loss": 0.0515,
|
3536 |
+
"step": 1176
|
3537 |
+
},
|
3538 |
+
{
|
3539 |
+
"epoch": 2.74,
|
3540 |
+
"learning_rate": 3.5297575057156255e-07,
|
3541 |
+
"loss": 0.0642,
|
3542 |
+
"step": 1178
|
3543 |
+
},
|
3544 |
+
{
|
3545 |
+
"epoch": 2.75,
|
3546 |
+
"learning_rate": 3.4021463277493337e-07,
|
3547 |
+
"loss": 0.0576,
|
3548 |
+
"step": 1180
|
3549 |
+
},
|
3550 |
+
{
|
3551 |
+
"epoch": 2.75,
|
3552 |
+
"learning_rate": 3.2768446610906834e-07,
|
3553 |
+
"loss": 0.0512,
|
3554 |
+
"step": 1182
|
3555 |
+
},
|
3556 |
+
{
|
3557 |
+
"epoch": 2.76,
|
3558 |
+
"learning_rate": 3.153855501516545e-07,
|
3559 |
+
"loss": 0.0497,
|
3560 |
+
"step": 1184
|
3561 |
+
},
|
3562 |
+
{
|
3563 |
+
"epoch": 2.76,
|
3564 |
+
"learning_rate": 3.0331817895151827e-07,
|
3565 |
+
"loss": 0.0493,
|
3566 |
+
"step": 1186
|
3567 |
+
},
|
3568 |
+
{
|
3569 |
+
"epoch": 2.77,
|
3570 |
+
"learning_rate": 2.9148264102159316e-07,
|
3571 |
+
"loss": 0.0526,
|
3572 |
+
"step": 1188
|
3573 |
+
},
|
3574 |
+
{
|
3575 |
+
"epoch": 2.77,
|
3576 |
+
"learning_rate": 2.7987921933202655e-07,
|
3577 |
+
"loss": 0.0616,
|
3578 |
+
"step": 1190
|
3579 |
+
},
|
3580 |
+
{
|
3581 |
+
"epoch": 2.78,
|
3582 |
+
"learning_rate": 2.685081913034082e-07,
|
3583 |
+
"loss": 0.0558,
|
3584 |
+
"step": 1192
|
3585 |
+
},
|
3586 |
+
{
|
3587 |
+
"epoch": 2.78,
|
3588 |
+
"learning_rate": 2.573698288001403e-07,
|
3589 |
+
"loss": 0.0537,
|
3590 |
+
"step": 1194
|
3591 |
+
},
|
3592 |
+
{
|
3593 |
+
"epoch": 2.78,
|
3594 |
+
"learning_rate": 2.46464398123939e-07,
|
3595 |
+
"loss": 0.0549,
|
3596 |
+
"step": 1196
|
3597 |
+
},
|
3598 |
+
{
|
3599 |
+
"epoch": 2.79,
|
3600 |
+
"learning_rate": 2.3579216000746418e-07,
|
3601 |
+
"loss": 0.0523,
|
3602 |
+
"step": 1198
|
3603 |
+
},
|
3604 |
+
{
|
3605 |
+
"epoch": 2.79,
|
3606 |
+
"learning_rate": 2.2535336960809118e-07,
|
3607 |
+
"loss": 0.0558,
|
3608 |
+
"step": 1200
|
3609 |
+
},
|
3610 |
+
{
|
3611 |
+
"epoch": 2.8,
|
3612 |
+
"learning_rate": 2.1514827650180425e-07,
|
3613 |
+
"loss": 0.0488,
|
3614 |
+
"step": 1202
|
3615 |
+
},
|
3616 |
+
{
|
3617 |
+
"epoch": 2.8,
|
3618 |
+
"learning_rate": 2.051771246772305e-07,
|
3619 |
+
"loss": 0.052,
|
3620 |
+
"step": 1204
|
3621 |
+
},
|
3622 |
+
{
|
3623 |
+
"epoch": 2.81,
|
3624 |
+
"learning_rate": 1.954401525298144e-07,
|
3625 |
+
"loss": 0.0518,
|
3626 |
+
"step": 1206
|
3627 |
+
},
|
3628 |
+
{
|
3629 |
+
"epoch": 2.81,
|
3630 |
+
"learning_rate": 1.859375928561058e-07,
|
3631 |
+
"loss": 0.0477,
|
3632 |
+
"step": 1208
|
3633 |
+
},
|
3634 |
+
{
|
3635 |
+
"epoch": 2.82,
|
3636 |
+
"learning_rate": 1.7666967284820202e-07,
|
3637 |
+
"loss": 0.055,
|
3638 |
+
"step": 1210
|
3639 |
+
},
|
3640 |
+
{
|
3641 |
+
"epoch": 2.82,
|
3642 |
+
"learning_rate": 1.6763661408831677e-07,
|
3643 |
+
"loss": 0.0534,
|
3644 |
+
"step": 1212
|
3645 |
+
},
|
3646 |
+
{
|
3647 |
+
"epoch": 2.83,
|
3648 |
+
"learning_rate": 1.5883863254347653e-07,
|
3649 |
+
"loss": 0.0522,
|
3650 |
+
"step": 1214
|
3651 |
+
},
|
3652 |
+
{
|
3653 |
+
"epoch": 2.83,
|
3654 |
+
"learning_rate": 1.5027593856036137e-07,
|
3655 |
+
"loss": 0.0518,
|
3656 |
+
"step": 1216
|
3657 |
+
},
|
3658 |
+
{
|
3659 |
+
"epoch": 2.84,
|
3660 |
+
"learning_rate": 1.4194873686027566e-07,
|
3661 |
+
"loss": 0.0484,
|
3662 |
+
"step": 1218
|
3663 |
+
},
|
3664 |
+
{
|
3665 |
+
"epoch": 2.84,
|
3666 |
+
"learning_rate": 1.3385722653425304e-07,
|
3667 |
+
"loss": 0.0571,
|
3668 |
+
"step": 1220
|
3669 |
+
},
|
3670 |
+
{
|
3671 |
+
"epoch": 2.85,
|
3672 |
+
"learning_rate": 1.2600160103829584e-07,
|
3673 |
+
"loss": 0.048,
|
3674 |
+
"step": 1222
|
3675 |
+
},
|
3676 |
+
{
|
3677 |
+
"epoch": 2.85,
|
3678 |
+
"learning_rate": 1.1838204818874877e-07,
|
3679 |
+
"loss": 0.0521,
|
3680 |
+
"step": 1224
|
3681 |
+
},
|
3682 |
+
{
|
3683 |
+
"epoch": 2.85,
|
3684 |
+
"learning_rate": 1.1099875015781359e-07,
|
3685 |
+
"loss": 0.0546,
|
3686 |
+
"step": 1226
|
3687 |
+
},
|
3688 |
+
{
|
3689 |
+
"epoch": 2.86,
|
3690 |
+
"learning_rate": 1.0385188346918485e-07,
|
3691 |
+
"loss": 0.0492,
|
3692 |
+
"step": 1228
|
3693 |
+
},
|
3694 |
+
{
|
3695 |
+
"epoch": 2.86,
|
3696 |
+
"learning_rate": 9.694161899383992e-08,
|
3697 |
+
"loss": 0.0555,
|
3698 |
+
"step": 1230
|
3699 |
+
},
|
3700 |
+
{
|
3701 |
+
"epoch": 2.87,
|
3702 |
+
"learning_rate": 9.026812194594448e-08,
|
3703 |
+
"loss": 0.0494,
|
3704 |
+
"step": 1232
|
3705 |
+
},
|
3706 |
+
{
|
3707 |
+
"epoch": 2.87,
|
3708 |
+
"learning_rate": 8.383155187890901e-08,
|
3709 |
+
"loss": 0.0527,
|
3710 |
+
"step": 1234
|
3711 |
+
},
|
3712 |
+
{
|
3713 |
+
"epoch": 2.88,
|
3714 |
+
"learning_rate": 7.763206268156964e-08,
|
3715 |
+
"loss": 0.0527,
|
3716 |
+
"step": 1236
|
3717 |
+
},
|
3718 |
+
{
|
3719 |
+
"epoch": 2.88,
|
3720 |
+
"learning_rate": 7.166980257451106e-08,
|
3721 |
+
"loss": 0.0618,
|
3722 |
+
"step": 1238
|
3723 |
+
},
|
3724 |
+
{
|
3725 |
+
"epoch": 2.89,
|
3726 |
+
"learning_rate": 6.594491410652493e-08,
|
3727 |
+
"loss": 0.0506,
|
3728 |
+
"step": 1240
|
3729 |
+
},
|
3730 |
+
{
|
3731 |
+
"epoch": 2.89,
|
3732 |
+
"learning_rate": 6.045753415119593e-08,
|
3733 |
+
"loss": 0.0577,
|
3734 |
+
"step": 1242
|
3735 |
+
},
|
3736 |
+
{
|
3737 |
+
"epoch": 2.9,
|
3738 |
+
"learning_rate": 5.520779390363551e-08,
|
3739 |
+
"loss": 0.0495,
|
3740 |
+
"step": 1244
|
3741 |
+
},
|
3742 |
+
{
|
3743 |
+
"epoch": 2.9,
|
3744 |
+
"learning_rate": 5.019581887733993e-08,
|
3745 |
+
"loss": 0.0563,
|
3746 |
+
"step": 1246
|
3747 |
+
},
|
3748 |
+
{
|
3749 |
+
"epoch": 2.91,
|
3750 |
+
"learning_rate": 4.542172890119267e-08,
|
3751 |
+
"loss": 0.0556,
|
3752 |
+
"step": 1248
|
3753 |
+
},
|
3754 |
+
{
|
3755 |
+
"epoch": 2.91,
|
3756 |
+
"learning_rate": 4.0885638116601176e-08,
|
3757 |
+
"loss": 0.0518,
|
3758 |
+
"step": 1250
|
3759 |
+
},
|
3760 |
+
{
|
3761 |
+
"epoch": 2.92,
|
3762 |
+
"learning_rate": 3.6587654974761246e-08,
|
3763 |
+
"loss": 0.0517,
|
3764 |
+
"step": 1252
|
3765 |
+
},
|
3766 |
+
{
|
3767 |
+
"epoch": 2.92,
|
3768 |
+
"learning_rate": 3.252788223407244e-08,
|
3769 |
+
"loss": 0.0531,
|
3770 |
+
"step": 1254
|
3771 |
+
},
|
3772 |
+
{
|
3773 |
+
"epoch": 2.92,
|
3774 |
+
"learning_rate": 2.870641695767451e-08,
|
3775 |
+
"loss": 0.0525,
|
3776 |
+
"step": 1256
|
3777 |
+
},
|
3778 |
+
{
|
3779 |
+
"epoch": 2.93,
|
3780 |
+
"learning_rate": 2.5123350511129242e-08,
|
3781 |
+
"loss": 0.0609,
|
3782 |
+
"step": 1258
|
3783 |
+
},
|
3784 |
+
{
|
3785 |
+
"epoch": 2.93,
|
3786 |
+
"learning_rate": 2.177876856023997e-08,
|
3787 |
+
"loss": 0.0578,
|
3788 |
+
"step": 1260
|
3789 |
+
},
|
3790 |
+
{
|
3791 |
+
"epoch": 2.94,
|
3792 |
+
"learning_rate": 1.8672751068995464e-08,
|
3793 |
+
"loss": 0.0544,
|
3794 |
+
"step": 1262
|
3795 |
+
},
|
3796 |
+
{
|
3797 |
+
"epoch": 2.94,
|
3798 |
+
"learning_rate": 1.5805372297662546e-08,
|
3799 |
+
"loss": 0.0557,
|
3800 |
+
"step": 1264
|
3801 |
+
},
|
3802 |
+
{
|
3803 |
+
"epoch": 2.95,
|
3804 |
+
"learning_rate": 1.3176700801014186e-08,
|
3805 |
+
"loss": 0.0509,
|
3806 |
+
"step": 1266
|
3807 |
+
},
|
3808 |
+
{
|
3809 |
+
"epoch": 2.95,
|
3810 |
+
"learning_rate": 1.0786799426683037e-08,
|
3811 |
+
"loss": 0.0564,
|
3812 |
+
"step": 1268
|
3813 |
+
},
|
3814 |
+
{
|
3815 |
+
"epoch": 2.96,
|
3816 |
+
"learning_rate": 8.635725313663745e-09,
|
3817 |
+
"loss": 0.055,
|
3818 |
+
"step": 1270
|
3819 |
+
},
|
3820 |
+
{
|
3821 |
+
"epoch": 2.96,
|
3822 |
+
"learning_rate": 6.723529890946268e-09,
|
3823 |
+
"loss": 0.0494,
|
3824 |
+
"step": 1272
|
3825 |
+
},
|
3826 |
+
{
|
3827 |
+
"epoch": 2.97,
|
3828 |
+
"learning_rate": 5.05025887628352e-09,
|
3829 |
+
"loss": 0.0501,
|
3830 |
+
"step": 1274
|
3831 |
+
},
|
3832 |
+
{
|
3833 |
+
"epoch": 2.97,
|
3834 |
+
"learning_rate": 3.615952275104473e-09,
|
3835 |
+
"loss": 0.0505,
|
3836 |
+
"step": 1276
|
3837 |
+
},
|
3838 |
+
{
|
3839 |
+
"epoch": 2.98,
|
3840 |
+
"learning_rate": 2.420644379549364e-09,
|
3841 |
+
"loss": 0.0515,
|
3842 |
+
"step": 1278
|
3843 |
+
},
|
3844 |
+
{
|
3845 |
+
"epoch": 2.98,
|
3846 |
+
"learning_rate": 1.4643637676559074e-09,
|
3847 |
+
"loss": 0.2096,
|
3848 |
+
"step": 1280
|
3849 |
+
},
|
3850 |
+
{
|
3851 |
+
"epoch": 2.98,
|
3852 |
+
"learning_rate": 7.471333026742856e-10,
|
3853 |
+
"loss": 0.0539,
|
3854 |
+
"step": 1282
|
3855 |
+
},
|
3856 |
+
{
|
3857 |
+
"epoch": 2.99,
|
3858 |
+
"learning_rate": 2.689701325209182e-10,
|
3859 |
+
"loss": 0.0536,
|
3860 |
+
"step": 1284
|
3861 |
+
},
|
3862 |
+
{
|
3863 |
+
"epoch": 2.99,
|
3864 |
+
"learning_rate": 2.988568936768132e-11,
|
3865 |
+
"loss": 0.0512,
|
3866 |
+
"step": 1286
|
3867 |
+
}
|
3868 |
+
],
|
3869 |
+
"max_steps": 1287,
|
3870 |
+
"num_train_epochs": 3,
|
3871 |
+
"total_flos": 999035450556416.0,
|
3872 |
+
"trial_name": null,
|
3873 |
+
"trial_params": null
|
3874 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1aa0c429a2a24dffa8e1b675d54e650f542f904e47dfea597b9ba0b965212f79
|
3 |
+
size 5115
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,584 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage == 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# record shared parameters so that they can be recovered based on partners
|
124 |
+
# this is because such parameters holding reference only are not saved by optimizer
|
125 |
+
shared_params = []
|
126 |
+
for param in state_dict["module"]:
|
127 |
+
if param not in [*param_names, *buffer_names]:
|
128 |
+
for share_param in state_dict["module"]:
|
129 |
+
if (state_dict["module"][share_param].data_ptr() == state_dict["module"][param].data_ptr()
|
130 |
+
and share_param != param):
|
131 |
+
shared_params.append([param, share_param])
|
132 |
+
break
|
133 |
+
|
134 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
135 |
+
|
136 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
137 |
+
|
138 |
+
z_model_state = zero_model_state(buffers=buffers,
|
139 |
+
param_shapes=param_shapes,
|
140 |
+
shared_params=shared_params,
|
141 |
+
ds_version=ds_version,
|
142 |
+
frozen_param_shapes=frozen_param_shapes,
|
143 |
+
frozen_param_fragments=frozen_param_fragments)
|
144 |
+
zero_model_states.append(z_model_state)
|
145 |
+
|
146 |
+
return zero_model_states
|
147 |
+
|
148 |
+
|
149 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
150 |
+
|
151 |
+
total_files = len(files)
|
152 |
+
state_dicts = []
|
153 |
+
for f in files:
|
154 |
+
state_dicts.append(torch.load(f, map_location=device))
|
155 |
+
|
156 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
157 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
158 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
159 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
160 |
+
|
161 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
162 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
163 |
+
# use the max of the partition_count to get the dp world_size.
|
164 |
+
|
165 |
+
if type(world_size) is list:
|
166 |
+
world_size = max(world_size)
|
167 |
+
|
168 |
+
if world_size != total_files:
|
169 |
+
raise ValueError(
|
170 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
171 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
172 |
+
)
|
173 |
+
|
174 |
+
# the groups are named differently in each stage
|
175 |
+
if zero_stage == 2:
|
176 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
177 |
+
elif zero_stage == 3:
|
178 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
179 |
+
else:
|
180 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
181 |
+
|
182 |
+
if zero_stage == 2:
|
183 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
184 |
+
elif zero_stage == 3:
|
185 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
186 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
187 |
+
#
|
188 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
189 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
190 |
+
|
191 |
+
fp32_flat_groups = [
|
192 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
193 |
+
]
|
194 |
+
|
195 |
+
return zero_stage, world_size, fp32_flat_groups
|
196 |
+
|
197 |
+
|
198 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
199 |
+
"""
|
200 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
201 |
+
|
202 |
+
Args:
|
203 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
204 |
+
|
205 |
+
"""
|
206 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
207 |
+
|
208 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
209 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
210 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
211 |
+
|
212 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
213 |
+
|
214 |
+
zero_model_states = parse_model_states(model_files)
|
215 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
216 |
+
|
217 |
+
if zero_stage == 2:
|
218 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
219 |
+
elif zero_stage == 3:
|
220 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
221 |
+
|
222 |
+
|
223 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
224 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
225 |
+
return
|
226 |
+
|
227 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
228 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
229 |
+
|
230 |
+
if debug:
|
231 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
233 |
+
|
234 |
+
wanted_params = len(frozen_param_shapes)
|
235 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
236 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
237 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
238 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
239 |
+
|
240 |
+
total_params = 0
|
241 |
+
total_numel = 0
|
242 |
+
for name, shape in frozen_param_shapes.items():
|
243 |
+
total_params += 1
|
244 |
+
unpartitioned_numel = shape.numel()
|
245 |
+
total_numel += unpartitioned_numel
|
246 |
+
|
247 |
+
state_dict[name] = frozen_param_fragments[name]
|
248 |
+
|
249 |
+
if debug:
|
250 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
251 |
+
|
252 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
253 |
+
|
254 |
+
|
255 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
256 |
+
param_shapes = zero_model_states[0].param_shapes
|
257 |
+
|
258 |
+
# Reconstruction protocol:
|
259 |
+
#
|
260 |
+
# XXX: document this
|
261 |
+
|
262 |
+
if debug:
|
263 |
+
for i in range(world_size):
|
264 |
+
for j in range(len(fp32_flat_groups[0])):
|
265 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
266 |
+
|
267 |
+
# XXX: memory usage doubles here (zero2)
|
268 |
+
num_param_groups = len(fp32_flat_groups[0])
|
269 |
+
merged_single_partition_of_fp32_groups = []
|
270 |
+
for i in range(num_param_groups):
|
271 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
272 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
273 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
274 |
+
avail_numel = sum(
|
275 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
276 |
+
|
277 |
+
if debug:
|
278 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
279 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
280 |
+
# not asserting if there is a mismatch due to possible padding
|
281 |
+
print(f"Have {avail_numel} numels to process.")
|
282 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
283 |
+
|
284 |
+
# params
|
285 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
286 |
+
# out-of-core computing solution
|
287 |
+
total_numel = 0
|
288 |
+
total_params = 0
|
289 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
290 |
+
offset = 0
|
291 |
+
avail_numel = full_single_fp32_vector.numel()
|
292 |
+
for name, shape in shapes.items():
|
293 |
+
|
294 |
+
unpartitioned_numel = shape.numel()
|
295 |
+
total_numel += unpartitioned_numel
|
296 |
+
total_params += 1
|
297 |
+
|
298 |
+
if debug:
|
299 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
300 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
301 |
+
offset += unpartitioned_numel
|
302 |
+
|
303 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
304 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
305 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
306 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
307 |
+
align_to = 2 * world_size
|
308 |
+
|
309 |
+
def zero2_align(x):
|
310 |
+
return align_to * math.ceil(x / align_to)
|
311 |
+
|
312 |
+
if debug:
|
313 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
314 |
+
|
315 |
+
offset = zero2_align(offset)
|
316 |
+
avail_numel = zero2_align(avail_numel)
|
317 |
+
|
318 |
+
if debug:
|
319 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
320 |
+
|
321 |
+
# Sanity check
|
322 |
+
if offset != avail_numel:
|
323 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
324 |
+
|
325 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
326 |
+
|
327 |
+
|
328 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
329 |
+
state_dict = OrderedDict()
|
330 |
+
|
331 |
+
# buffers
|
332 |
+
buffers = zero_model_states[0].buffers
|
333 |
+
state_dict.update(buffers)
|
334 |
+
if debug:
|
335 |
+
print(f"added {len(buffers)} buffers")
|
336 |
+
|
337 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
338 |
+
|
339 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
340 |
+
|
341 |
+
# recover shared parameters
|
342 |
+
for pair in zero_model_states[0].shared_params:
|
343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
344 |
+
|
345 |
+
return state_dict
|
346 |
+
|
347 |
+
|
348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
349 |
+
remainder = unpartitioned_numel % world_size
|
350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
352 |
+
return partitioned_numel, padding_numel
|
353 |
+
|
354 |
+
|
355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
357 |
+
return
|
358 |
+
|
359 |
+
if debug:
|
360 |
+
for i in range(world_size):
|
361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
363 |
+
|
364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
365 |
+
wanted_params = len(frozen_param_shapes)
|
366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
370 |
+
|
371 |
+
total_params = 0
|
372 |
+
total_numel = 0
|
373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
374 |
+
total_params += 1
|
375 |
+
unpartitioned_numel = shape.numel()
|
376 |
+
total_numel += unpartitioned_numel
|
377 |
+
|
378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
380 |
+
|
381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
382 |
+
|
383 |
+
if debug:
|
384 |
+
print(
|
385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
386 |
+
)
|
387 |
+
|
388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
389 |
+
|
390 |
+
|
391 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
392 |
+
param_shapes = zero_model_states[0].param_shapes
|
393 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
394 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
395 |
+
# param, re-consolidating each param, while dealing with padding if any
|
396 |
+
|
397 |
+
# merge list of dicts, preserving order
|
398 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
399 |
+
|
400 |
+
if debug:
|
401 |
+
for i in range(world_size):
|
402 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
403 |
+
|
404 |
+
wanted_params = len(param_shapes)
|
405 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
406 |
+
# not asserting if there is a mismatch due to possible padding
|
407 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
408 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
409 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
410 |
+
|
411 |
+
# params
|
412 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
413 |
+
# out-of-core computing solution
|
414 |
+
offset = 0
|
415 |
+
total_numel = 0
|
416 |
+
total_params = 0
|
417 |
+
for name, shape in param_shapes.items():
|
418 |
+
|
419 |
+
unpartitioned_numel = shape.numel()
|
420 |
+
total_numel += unpartitioned_numel
|
421 |
+
total_params += 1
|
422 |
+
|
423 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
424 |
+
|
425 |
+
if debug:
|
426 |
+
print(
|
427 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
428 |
+
)
|
429 |
+
|
430 |
+
# XXX: memory usage doubles here
|
431 |
+
state_dict[name] = torch.cat(
|
432 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
433 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
434 |
+
offset += partitioned_numel
|
435 |
+
|
436 |
+
offset *= world_size
|
437 |
+
|
438 |
+
# Sanity check
|
439 |
+
if offset != avail_numel:
|
440 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
441 |
+
|
442 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
443 |
+
|
444 |
+
|
445 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
446 |
+
state_dict = OrderedDict()
|
447 |
+
|
448 |
+
# buffers
|
449 |
+
buffers = zero_model_states[0].buffers
|
450 |
+
state_dict.update(buffers)
|
451 |
+
if debug:
|
452 |
+
print(f"added {len(buffers)} buffers")
|
453 |
+
|
454 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
455 |
+
|
456 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
457 |
+
|
458 |
+
# recover shared parameters
|
459 |
+
for pair in zero_model_states[0].shared_params:
|
460 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
461 |
+
|
462 |
+
return state_dict
|
463 |
+
|
464 |
+
|
465 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
466 |
+
"""
|
467 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
468 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
469 |
+
via a model hub.
|
470 |
+
|
471 |
+
Args:
|
472 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
473 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
474 |
+
|
475 |
+
Returns:
|
476 |
+
- pytorch ``state_dict``
|
477 |
+
|
478 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
479 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
480 |
+
the checkpoint.
|
481 |
+
|
482 |
+
A typical usage might be ::
|
483 |
+
|
484 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
485 |
+
# do the training and checkpoint saving
|
486 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
487 |
+
model = model.cpu() # move to cpu
|
488 |
+
model.load_state_dict(state_dict)
|
489 |
+
# submit to model hub or save the model to share with others
|
490 |
+
|
491 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
492 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
493 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
494 |
+
|
495 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
496 |
+
|
497 |
+
"""
|
498 |
+
if tag is None:
|
499 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
500 |
+
if os.path.isfile(latest_path):
|
501 |
+
with open(latest_path, 'r') as fd:
|
502 |
+
tag = fd.read().strip()
|
503 |
+
else:
|
504 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
505 |
+
|
506 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
507 |
+
|
508 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
509 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
510 |
+
|
511 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
512 |
+
|
513 |
+
|
514 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
515 |
+
"""
|
516 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
517 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
518 |
+
|
519 |
+
Args:
|
520 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
521 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
522 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
523 |
+
"""
|
524 |
+
|
525 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
526 |
+
print(f"Saving fp32 state dict to {output_file}")
|
527 |
+
torch.save(state_dict, output_file)
|
528 |
+
|
529 |
+
|
530 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
531 |
+
"""
|
532 |
+
1. Put the provided model to cpu
|
533 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
534 |
+
3. Load it into the provided model
|
535 |
+
|
536 |
+
Args:
|
537 |
+
- ``model``: the model object to update
|
538 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
539 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
540 |
+
|
541 |
+
Returns:
|
542 |
+
- ``model`: modified model
|
543 |
+
|
544 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
545 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
546 |
+
conveniently placed for you in the checkpoint folder.
|
547 |
+
|
548 |
+
A typical usage might be ::
|
549 |
+
|
550 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
551 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
552 |
+
# submit to model hub or save the model to share with others
|
553 |
+
|
554 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
555 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
556 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
557 |
+
|
558 |
+
"""
|
559 |
+
logger.info(f"Extracting fp32 weights")
|
560 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
561 |
+
|
562 |
+
logger.info(f"Overwriting model with fp32 weights")
|
563 |
+
model = model.cpu()
|
564 |
+
model.load_state_dict(state_dict, strict=False)
|
565 |
+
|
566 |
+
return model
|
567 |
+
|
568 |
+
|
569 |
+
if __name__ == "__main__":
|
570 |
+
|
571 |
+
parser = argparse.ArgumentParser()
|
572 |
+
parser.add_argument("checkpoint_dir",
|
573 |
+
type=str,
|
574 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
575 |
+
parser.add_argument(
|
576 |
+
"output_file",
|
577 |
+
type=str,
|
578 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
579 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
580 |
+
args = parser.parse_args()
|
581 |
+
|
582 |
+
debug = args.debug
|
583 |
+
|
584 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)
|