--- license: apache-2.0 language: - en - zh library_name: transformers pipeline_tag: text-generation tags: - mistral - qwen2 --- This is the Mistral version of [Qwen2-7B-Instruct](https://huggingface.co/Qwen/Qwen2-7B-Instruct) model by Alibaba Cloud. The original codebase can be found at: (https://github.com/hiyouga/LLaMA-Factory/blob/main/tests/llamafy_qwen.py). I have made modifications to make it compatible with qwen2. This model is converted with https://github.com/Minami-su/character_AI_open/blob/main/mistral_qwen2.py ## special 1.Before using this model, you need to modify modeling_mistral.py in transformers library 2.vim /root/anaconda3/envs/train/lib/python3.9/site-packages/transformers/models/mistral/modeling_mistral.py 3.find MistralAttention, 4.modify q,k,v,o bias=False ----->, bias=config.attention_bias Before: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/62d7f90b102d144db4b4245b/AKj_fwEoLUKWZ4mViYW-q.png) After: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/62d7f90b102d144db4b4245b/A2gSwq9l6Zx8X1qegtgvE.png) ## Differences between qwen2 mistral and qwen2 llamafy Compared to qwen2 llamafy,qwen2 mistral can use sliding window attention,qwen2 mistral is faster than qwen2 llamafy, and the context length is better Usage: ```python from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer tokenizer = AutoTokenizer.from_pretrained("Minami-su/Qwen2-7B-Instruct-mistral") model = AutoModelForCausalLM.from_pretrained("Minami-su/Qwen2-7B-Instruct-mistral", torch_dtype="auto", device_map="auto") streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) messages = [ {"role": "user", "content": "Who are you?"} ] inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt") inputs = inputs.to("cuda") generate_ids = model.generate(inputs,max_length=2048, streamer=streamer) ```