File size: 2,079 Bytes
5d34a1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: mit
base_model: indobenchmark/indogpt
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: bdc2024-indogpt-chatgpt-1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bdc2024-indogpt-chatgpt-1

This model is a fine-tuned version of [indobenchmark/indogpt](https://huggingface.co/indobenchmark/indogpt) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4125
- Accuracy: 0.9120
- Balanced Accuracy: 0.7419
- Precision: 0.9074
- Recall: 0.9120
- F1: 0.9000

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Balanced Accuracy | Precision | Recall | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------------:|:---------:|:------:|:------:|
| No log        | 1.0   | 483  | 0.7389          | 0.7859   | 0.5178            | 0.8025    | 0.7859 | 0.7522 |
| 0.9144        | 2.0   | 966  | 0.5773          | 0.8337   | 0.6070            | 0.8360    | 0.8337 | 0.8036 |
| 0.5745        | 3.0   | 1449 | 0.4493          | 0.8910   | 0.7056            | 0.8885    | 0.8910 | 0.8747 |
| 0.3836        | 4.0   | 1932 | 0.4228          | 0.9025   | 0.7261            | 0.8978    | 0.9025 | 0.8878 |
| 0.2392        | 5.0   | 2415 | 0.4125          | 0.9120   | 0.7419            | 0.9074    | 0.9120 | 0.9000 |


### Framework versions

- Transformers 4.33.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.13.3