File size: 1,946 Bytes
292e40e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: bdc2024-indobert-2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bdc2024-indobert-2

This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5554
- Accuracy: 0.9331
- Balanced Accuracy: 0.8724
- Precision: 0.9353
- Recall: 0.9331
- F1: 0.9289

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Balanced Accuracy | Precision | Recall | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------------:|:---------:|:------:|:------:|
| No log        | 1.0   | 483  | 0.5108          | 0.9197   | 0.8454            | 0.9195    | 0.9197 | 0.9132 |
| 0.0773        | 2.0   | 966  | 0.5374          | 0.9235   | 0.8668            | 0.9266    | 0.9235 | 0.9196 |
| 0.0374        | 3.0   | 1449 | 0.5451          | 0.9331   | 0.8689            | 0.9359    | 0.9331 | 0.9281 |
| 0.0242        | 4.0   | 1932 | 0.5567          | 0.9331   | 0.8726            | 0.9353    | 0.9331 | 0.9288 |
| 0.0162        | 5.0   | 2415 | 0.5554          | 0.9331   | 0.8724            | 0.9353    | 0.9331 | 0.9289 |


### Framework versions

- Transformers 4.33.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.13.3