File size: 2,368 Bytes
1d067ec 0fe70b7 1d067ec 0fe70b7 1d067ec 0fe70b7 1d067ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: w2v2-base-pretrained_lr5e-5_at0.9_da1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# w2v2-base-pretrained_lr5e-5_at0.9_da1
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5021
- Wer: 0.1820
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 18.4753 | 6.1 | 250 | 4.2333 | 1.0 |
| 3.358 | 12.2 | 500 | 3.2161 | 1.0 |
| 3.108 | 18.29 | 750 | 3.1259 | 1.0 |
| 2.2419 | 24.39 | 1000 | 1.1771 | 0.7117 |
| 0.2791 | 30.49 | 1250 | 1.5708 | 0.2328 |
| 0.137 | 36.59 | 1500 | 1.7979 | 0.1961 |
| 0.0936 | 42.68 | 1750 | 2.0223 | 0.1948 |
| 0.0723 | 48.78 | 2000 | 2.2080 | 0.1892 |
| 0.0584 | 54.88 | 2250 | 2.1748 | 0.1854 |
| 0.0472 | 60.98 | 2500 | 2.2649 | 0.1828 |
| 0.042 | 67.07 | 2750 | 2.3289 | 0.1880 |
| 0.0349 | 73.17 | 3000 | 2.3042 | 0.1854 |
| 0.032 | 79.27 | 3250 | 2.2214 | 0.1841 |
| 0.0284 | 85.37 | 3500 | 2.3253 | 0.1807 |
| 0.0258 | 91.46 | 3750 | 2.4980 | 0.1815 |
| 0.0238 | 97.56 | 4000 | 2.5021 | 0.1820 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.0.0
- Datasets 2.14.6
- Tokenizers 0.14.1
|