File size: 2,183 Bytes
b0cce44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: w2v2-base-pretrained_lr1e-4_at0.7_da1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# w2v2-base-pretrained_lr1e-4_at0.7_da1
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 6.2022
- Wer: 1.0580
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 60
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 18.007 | 4.46 | 250 | 4.3814 | 1.0 |
| 3.2628 | 8.93 | 500 | 3.8568 | 1.0 |
| 3.1079 | 13.39 | 750 | 3.9328 | 1.0 |
| 1.4764 | 17.86 | 1000 | 2.7696 | 1.0384 |
| 0.2321 | 22.32 | 1250 | 4.2808 | 1.0507 |
| 0.1312 | 26.79 | 1500 | 4.8707 | 1.0529 |
| 0.0793 | 31.25 | 1750 | 5.2587 | 1.0558 |
| 0.0546 | 35.71 | 2000 | 5.6739 | 1.0541 |
| 0.0401 | 40.18 | 2250 | 5.7379 | 1.0494 |
| 0.0303 | 44.64 | 2500 | 5.8382 | 1.0558 |
| 0.0255 | 49.11 | 2750 | 6.0859 | 1.0567 |
| 0.0223 | 53.57 | 3000 | 6.0789 | 1.0558 |
| 0.019 | 58.04 | 3250 | 6.2022 | 1.0580 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.0.0
- Datasets 2.14.6
- Tokenizers 0.14.1
|