--- base_model: Medixspace/Mistral-Nemo-Instruct-2407-freeze-with-TNM library_name: peft --- Checkpoint: /media/mlazure4775847383/storage/LM_saves_Mistral/Mistral-Nemo-Instruct-2407/lora/train_2024-11-05-09-59-46/checkpoint-2103 NB! The tokenizer in this repo has been changed for the base model's tokenizer. This is needed for predibase run. The original tokenizer is in storage. Training args: ``` bf16: true cutoff_len: 25000 dataset: train_data_checklist,val_data_checklist dataset_dir: data ddp_timeout: 180000000 deepspeed: cache/ds_z3_offload_config.json do_train: true finetuning_type: lora flash_attn: fa2 gradient_accumulation_steps: 8 include_num_input_tokens_seen: true learning_rate: 5.0e-05 logging_steps: 250 lora_alpha: 16 lora_dropout: 0 lora_rank: 8 lora_target: all lr_scheduler_type: cosine max_grad_norm: 1.0 max_samples: 100000 model_name_or_path: Medixspace/Mistral-Nemo-Instruct-2407-freeze-with-TNM num_train_epochs: 3.0 optim: adamw_torch output_dir: saves/Mistral-Nemo-Instruct-2407/lora/train_2024-11-05-09-59-46 packing: false per_device_train_batch_size: 1 plot_loss: true preprocessing_num_workers: 16 report_to: none save_steps: 500 stage: sft template: mistral warmup_steps: 0 ``` Best inference args: ``` temperature=0.9 top-p=0.5 ```