File size: 1,253 Bytes
69bec0a d2418d4 69bec0a d2418d4 69bec0a 66adc64 69bec0a 66adc64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
---
license: creativeml-openrail-m
base_model: CompVis/stable-diffusion-v1-4
datasets:
- MaxReynolds/MyPatternDataset
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
inference: true
---
# Text-to-image finetuning - MaxReynolds/MyPatternModel
This pipeline was finetuned from **CompVis/stable-diffusion-v1-4** on the **MaxReynolds/MyPatternDataset** dataset. Below are some example images generated with the finetuned pipeline using the following prompts: ['<r4nd0m-l4b3l>']:
![val_imgs_grid](./val_imgs_grid.png)
## Pipeline usage
You can use the pipeline like so:
```python
from diffusers import DiffusionPipeline
import torch
pipeline = DiffusionPipeline.from_pretrained("MaxReynolds/MyPatternModel", torch_dtype=torch.float16)
prompt = "<r4nd0m-l4b3l>"
image = pipeline(prompt).images[0]
image.save("my_image.png")
```
## Training info
These are the key hyperparameters used during training:
* Epochs: 25
* Learning rate: 1e-05
* Batch size: 1
* Gradient accumulation steps: 4
* Image resolution: 512
* Mixed-precision: fp16
More information on all the CLI arguments and the environment are available on your [`wandb` run page](https://wandb.ai/max-f-reynolds/text2image-fine-tune/runs/vc3btybi).
|