File size: 1,253 Bytes
69bec0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2418d4
69bec0a
 
 
 
 
 
 
 
 
 
 
 
 
d2418d4
69bec0a
 
 
 
 
 
 
 
66adc64
69bec0a
 
 
 
 
 
 
66adc64
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

---
license: creativeml-openrail-m
base_model: CompVis/stable-diffusion-v1-4
datasets:
- MaxReynolds/MyPatternDataset
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
inference: true
---
    
# Text-to-image finetuning - MaxReynolds/MyPatternModel

This pipeline was finetuned from **CompVis/stable-diffusion-v1-4** on the **MaxReynolds/MyPatternDataset** dataset. Below are some example images generated with the finetuned pipeline using the following prompts: ['<r4nd0m-l4b3l>']: 

![val_imgs_grid](./val_imgs_grid.png)


## Pipeline usage

You can use the pipeline like so:

```python
from diffusers import DiffusionPipeline
import torch

pipeline = DiffusionPipeline.from_pretrained("MaxReynolds/MyPatternModel", torch_dtype=torch.float16)
prompt = "<r4nd0m-l4b3l>"
image = pipeline(prompt).images[0]
image.save("my_image.png")
```

## Training info

These are the key hyperparameters used during training:

* Epochs: 25
* Learning rate: 1e-05
* Batch size: 1
* Gradient accumulation steps: 4
* Image resolution: 512
* Mixed-precision: fp16


More information on all the CLI arguments and the environment are available on your [`wandb` run page](https://wandb.ai/max-f-reynolds/text2image-fine-tune/runs/vc3btybi).