--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - f1 - precision - recall model-index: - name: VIT-ASVspoof5-Mel_Spectrogram-Synthetic-Voice-Detection results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.7633416105001773 - name: F1 type: f1 value: 0.8263822744093812 - name: Precision type: precision value: 0.9621029413546957 - name: Recall type: recall value: 0.7242190921033426 --- # VIT-ASVspoof5-Mel_Spectrogram-Synthetic-Voice-Detection This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 2.0728 - Accuracy: 0.7633 - F1: 0.8264 - Precision: 0.9621 - Recall: 0.7242 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.0047 | 1.0 | 22795 | 0.9664 | 0.8373 | 0.8919 | 0.9221 | 0.8637 | | 0.0064 | 2.0 | 45590 | 1.6013 | 0.7830 | 0.8421 | 0.9701 | 0.7439 | | 0.0 | 3.0 | 68385 | 2.0728 | 0.7633 | 0.8264 | 0.9621 | 0.7242 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0+cu124 - Datasets 2.21.0 - Tokenizers 0.19.1