--- license: bsd-3-clause base_model: MIT/ast-finetuned-audioset-10-10-0.4593 tags: - generated_from_trainer datasets: - audiofolder metrics: - accuracy - f1 - precision - recall model-index: - name: AST-ASVspoof5-Synthetic-Voice-Detection results: - task: name: Audio Classification type: audio-classification dataset: name: audiofolder type: audiofolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.8333451578573963 - name: F1 type: f1 value: 0.8891604695934469 - name: Precision type: precision value: 0.9208988192978341 - name: Recall type: recall value: 0.8595369289154868 --- # AST-ASVspoof5-Synthetic-Voice-Detection This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 2.2821 - Accuracy: 0.8333 - F1: 0.8892 - Precision: 0.9209 - Recall: 0.8595 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.0042 | 1.0 | 22795 | 1.6954 | 0.8470 | 0.8942 | 0.9672 | 0.8314 | | 0.0 | 2.0 | 45590 | 1.5632 | 0.8489 | 0.9014 | 0.9157 | 0.8875 | | 0.0 | 3.0 | 68385 | 2.2821 | 0.8333 | 0.8892 | 0.9209 | 0.8595 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1