File size: 2,238 Bytes
aad4a03
09088a1
 
 
 
 
 
aad4a03
 
09088a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aad4a03
 
09088a1
 
aad4a03
09088a1
aad4a03
09088a1
 
 
 
 
 
 
aad4a03
09088a1
aad4a03
09088a1
aad4a03
09088a1
aad4a03
09088a1
aad4a03
09088a1
aad4a03
09088a1
aad4a03
09088a1
aad4a03
09088a1
aad4a03
09088a1
 
 
 
 
 
 
 
aad4a03
09088a1
aad4a03
09088a1
 
 
 
 
aad4a03
 
09088a1
aad4a03
09088a1
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
license: bsd-3-clause
base_model: MIT/ast-finetuned-audioset-10-10-0.4593
tags:
- generated_from_trainer
datasets:
- audiofolder
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: AST-ASVspoof2019-Synthetic-Voice-Detection
  results:
  - task:
      name: Audio Classification
      type: audio-classification
    dataset:
      name: audiofolder
      type: audiofolder
      config: default
      split: validation
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.6294477539848655
    - name: F1
      type: f1
      value: 0.7685655387400071
    - name: Precision
      type: precision
      value: 0.8743850817984212
    - name: Recall
      type: recall
      value: 0.6855938284894152
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# AST-ASVspoof2019-Synthetic-Voice-Detection

This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the audiofolder dataset.
It achieves the following results on the evaluation set:
- Loss: 
- Accuracy: 
- F1: 
- Precision: 
- Recall: 

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0

### Training results

| Training Loss                         | Epoch | Step | Validation Loss                       | Accuracy | F1     | Precision | Recall |
|:-------------------------------------:|:-----:|:----:|:-------------------------------------:|:--------:|:------:|:---------:|:------:|
|  | 1.0   |  |  |    |  |     |  |
|  | 2.0   |  |  |    |  |     |  |
|  | 3.0   |  |  |    |  |     |  |


### Framework versions

- Transformers 4.36.2
- Pytorch 2.1.2
- Datasets 2.15.0
- Tokenizers 0.15.0