File size: 2,092 Bytes
be49f54 2033682 be49f54 4f86671 be49f54 2033682 4f86671 2033682 4f86671 be49f54 2033682 be49f54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- audio-classification
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: wav2vec2-base_down_on
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base_down_on
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the MatsRooth/down_on dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1385
- Accuracy: 0.9962
## Model description
Binary classifier using facebook/wav2vec2/base for the words "down" and "on".
## Intended uses & limitations
This is a demo of binary audio classification that illustrates data layout, training and evaluation using python and slurm.
## Training and evaluation data
The data are utterances of "down" and "on" in `superb ks`. See `down_on_copy.py` for the subsetting. This puts wav files in locations
like `down_on/data/train/on` and `down_on/data/train/down`
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 0
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6089 | 1.0 | 29 | 0.1385 | 0.9962 |
| 0.1289 | 2.0 | 58 | 0.0510 | 0.9962 |
| 0.0835 | 3.0 | 87 | 0.0433 | 0.9885 |
| 0.0605 | 4.0 | 116 | 0.0330 | 0.9923 |
| 0.0479 | 5.0 | 145 | 0.0273 | 0.9904 |
### Framework versions
- Transformers 4.31.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
|