--- language: - en license: apache-2.0 base_model: openai/whisper-medium.en tags: - generated_from_trainer metrics: - wer model-index: - name: ./400 results: [] --- # ./400 This model is a fine-tuned version of [openai/whisper-medium.en](https://huggingface.co/openai/whisper-medium.en) on the 400 SF 1000 dataset. It achieves the following results on the evaluation set: - Loss: 0.7217 - Wer Ortho: 29.6283 - Wer: 19.5551 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:| | 1.6015 | 4.0 | 100 | 1.1045 | 41.2901 | 30.3911 | | 0.8237 | 8.0 | 200 | 0.7959 | 31.3776 | 20.4880 | | 0.5824 | 12.0 | 300 | 0.7417 | 29.7741 | 19.3757 | | 0.4724 | 16.0 | 400 | 0.7256 | 29.5554 | 19.4474 | | 0.4232 | 20.0 | 500 | 0.7217 | 29.6283 | 19.5551 | ### Framework versions - Transformers 4.44.0 - Pytorch 1.13.1+cu117 - Datasets 2.20.0 - Tokenizers 0.19.1