{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9710a42500>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679348824811051565, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADXC0byqVYG9lbMWP3jvyb0tKcq+dOwYPmNpjz6N0hK+SkPJPYU8iD9V1PU+N3P7PWXsYb+L824/mOW+u/Gp3j51wE0+vHi3vWn3lD4dP4k+hOMIv5XDzD4oNtC70/DVPsESMj/Tuqw+zQnqPgqDQD8ipvU+jU6kv6hcsb55r9U/hgzHPRfmbL/ZWy4+4pfNv7b9jD8PZ7a+Yh0aPzZi27+VMIi/aE3HPzYVlz5qc5Q+6I2lvt7X1z9srYQ/f1Bkv/Jv+D5J4BdAti4rv1jeDECfA7i/07qsPuICDMB/Nqq/fhEsPiY9Lb82Nqc+MqZiP6Ghfb/mJi4/QUy7P/KWQr5Qkp8/80uvvjpizj9keAG/E85uv31bGL9fpZO/VA1Dv6iAeT8I66G+e2F9P1cXKr5Oits+p5Nqv0Anzr6z40o/wRIyP9O6rD7NCeo+fzaqv3Rk6j7l+JW/P9M7vn49HkBhAQE/cE0oP/7ajj/RovG/PdERvjHK2D+0d5U+HcxBQCqpmj70pCJACz3iPrZ3HkBIrMw/mvMVvCEbPz8H1Fk/cq4nv39tA0B6l7K9bVLMv58DuL/Tuqw+zQnqPn82qr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAWkwa3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACADAF8PQAAAAC6D/a/AAAAAIrol70AAAAAFjLqPwAAAADUuKy9AAAAAFm19T8AAAAAI/31PQAAAAAZkOG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArKqbNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKKbDzwAAAAAnP/+vwAAAADwaZ08AAAAAFj67j8AAAAAbMPhPQAAAAAcGuQ/AAAAAMSehj0AAAAAPXHkvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHPRMjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA3i7i6AAAAAK1l/b8AAAAAFPfaPQAAAABZnOE/AAAAAKN+uT0AAAAA6XLZPwAAAAAWsac9AAAAALEj378AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOvze2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAAJpovQAAAADZre+/AAAAAMdUfT0AAAAAUHXrPwAAAACvztq9AAAAAHPxAEAAAAAAdl31PQAAAABSmQDAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJS/N7E5yU+MAWyUTegDjAF0lEdArrfH779AHHV9lChoBkdAlQWRoh6jWWgHTegDaAhHQK64s/0NBnl1fZQoaAZHQJWF0QVbiZRoB03oA2gIR0CuvZFhgE2YdX2UKGgGR0CTGrbkfcN6aAdN6ANoCEdArsAKGL1mJ3V9lChoBkdAlg6z/hl182gHTegDaAhHQK7HPbUwztV1fZQoaAZHQJYSWKl54W1oB03oA2gIR0CuyMzdcjZ+dX2UKGgGR0CO+JV2icoZaAdN6ANoCEdArs91pj+aSnV9lChoBkdAlYnxYq5LAmgHTegDaAhHQK7R4Dh99c91fZQoaAZHQJaA+5Gz8gpoB03oA2gIR0Cu1s55Z8rqdX2UKGgGR0CUxRJ1q33IaAdN6ANoCEdArte77yhBaHV9lChoBkdAlT1AlOXVsmgHTegDaAhHQK7cepsoDxN1fZQoaAZHQJPlV0mtyPxoB03oA2gIR0Cu3vvdVNpNdX2UKGgGR0CS1gM+/xlQaAdN6ANoCEdAruVL349HMHV9lChoBkdAkOzx/ViF02gHTegDaAhHQK7mq1Z1V5t1fZQoaAZHQJO+DFId2gZoB03oA2gIR0Cu7f5OJtSAdX2UKGgGR0CSbabmlqJuaAdN6ANoCEdArvCFPi1iOXV9lChoBkdAkIFSYoiLVGgHTegDaAhHQK71d4SHuZ11fZQoaAZHQJEH2hlDneVoB03oA2gIR0Cu9llS88LbdX2UKGgGR0CTwEpt78ekaAdN6ANoCEdArvt1ByCFsnV9lChoBkdAkdzJjDsMRmgHTegDaAhHQK7+D6v7m+11fZQoaAZHQJNDXkBCD29oB03oA2gIR0CvA+CEQGwBdX2UKGgGR0CQa0gxJul5aAdN6ANoCEdArwUvdEb5unV9lChoBkdAlLhzyvs7dWgHTegDaAhHQK8NDrAxi5N1fZQoaAZHQJK6+CGvfTFoB03oA2gIR0CvD5IWP91mdX2UKGgGR0CTDtt78ejmaAdN6ANoCEdArxSKoCMglnV9lChoBkdAkHJmXXyy2WgHTegDaAhHQK8Vcx46fap1fZQoaAZHQJH6d+F10T1oB03oA2gIR0CvGlD4QBgedX2UKGgGR0CULlvduYQbaAdN6ANoCEdArxznmHP/rHV9lChoBkdAk2eEKzAvc2gHTegDaAhHQK8iUv9LpRp1fZQoaAZHQIBsg4CIUJxoB03oA2gIR0CvI61h9b5edX2UKGgGR0CSqjt9hJAdaAdN6ANoCEdArytsI/qxDHV9lChoBkdAlJh7WAf+0mgHTegDaAhHQK8ulOgxrSF1fZQoaAZHQJR+kKKHfuVoB03oA2gIR0CvM7pdjXnRdX2UKGgGR0CUehhTfixWaAdN6ANoCEdArzSmpZOi4HV9lChoBkdAlA2CV4X402gHTegDaAhHQK85ms4DLbJ1fZQoaAZHQJLggTM7lq9oB03oA2gIR0CvPBBBJI1+dX2UKGgGR0CSxh2+PBBSaAdN6ANoCEdAr0EIna37UHV9lChoBkdAkgTle8f3e2gHTegDaAhHQK9CXK6Fuel1fZQoaAZHQJOL3Fo+OfdoB03oA2gIR0CvShryDqW1dX2UKGgGR0CTPY9LHuJDaAdN6ANoCEdAr03TaEi+tnV9lChoBkdAklPQ8fV7QmgHTegDaAhHQK9S6Py08eV1fZQoaAZHQJEGmctoSL9oB03oA2gIR0CvU9WepXIVdX2UKGgGR0CSc3l+3H7xaAdN6ANoCEdAr1jDyjHn2nV9lChoBkdAkowRMajveGgHTegDaAhHQK9bU2G7Bft1fZQoaAZHQJB9riWE9MdoB03oA2gIR0CvYHJCrtE5dX2UKGgGR0CM5l+iJwbVaAdN6ANoCEdAr2GPQMQVbnV9lChoBkdAkyU8AvL5h2gHTegDaAhHQK9pb1mJ3xF1fZQoaAZHQJIlU+4b0e5oB03oA2gIR0CvbXkn9ehPdX2UKGgGR0CUmrFN+LFXaAdN6ANoCEdAr3KRHd43WHV9lChoBkdAk4B7ZBcAzmgHTegDaAhHQK9zhE6T4cp1fZQoaAZHQJXzlipeeFtoB03oA2gIR0CveH0OEug6dX2UKGgGR0CUqzOjqOcUaAdN6ANoCEdAr3r7FuNxVHV9lChoBkdAkhPBXKbKBGgHTegDaAhHQK+AAsH0K7Z1fZQoaAZHQJSYnEgntv5oB03oA2gIR0CvgOKzJIUbdX2UKGgGR0CTPmYgaFVUaAdN6ANoCEdAr4gdDv3JxXV9lChoBkdAlNW2ycCo0mgHTegDaAhHQK+MXttygf51fZQoaAZHQJQNwizLOiZoB03oA2gIR0CvkfLs0HhTdX2UKGgGR0CQ91q9oN/faAdN6ANoCEdAr5LkSAYpD3V9lChoBkdAkZ7mbXpW3mgHTegDaAhHQK+XxF1jiGZ1fZQoaAZHQJHAwOAiFCdoB03oA2gIR0Cvmj+vyLAIdX2UKGgGR0CR1sEuxrzoaAdN6ANoCEdAr586aTfR/nV9lChoBkdAknSSxeLNwGgHTegDaAhHQK+gFhNucc51fZQoaAZHQJILmh11W81oB03oA2gIR0CvptfhddE9dX2UKGgGR0CQGn6lLvkSaAdN6ANoCEdAr6rzXUYsNHV9lChoBkdAk9GBOgxrSGgHTegDaAhHQK+xH6D5CWx1fZQoaAZHQJKtCc3EQ5FoB03oA2gIR0CvsgiWeHzpdX2UKGgGR0CUICdJJ5E/aAdN6ANoCEdAr7b3wkPcz3V9lChoBkdAlPQuOOsDGWgHTegDaAhHQK+5dG+bmU51fZQoaAZHQJUjsFwDNhVoB03oA2gIR0Cvvm+qJdjYdX2UKGgGR0CVDUxri2lVaAdN6ANoCEdAr79ZTGYKIHV9lChoBkdAlhz2GM4tH2gHTegDaAhHQK/Fm4MnZ011fZQoaAZHQJYMeBas6q9oB03oA2gIR0CvyaePRzBAdX2UKGgGR0CW44lMh5gPaAdN6ANoCEdAr9Anv+fh/HV9lChoBkdAlZc05yU9p2gHTegDaAhHQK/RDXJYDDF1fZQoaAZHQJZrYwJw84hoB03oA2gIR0Cv1cLtVrAQdX2UKGgGR0CW0oA/LTx5aAdN6ANoCEdAr9gt9jPOZHV9lChoBkdAl4QI+Sr5qWgHTegDaAhHQK/dMj7hvR91fZQoaAZHQJbuVw++ueVoB03oA2gIR0Cv3gzUy57PdX2UKGgGR0CWkyAiV0LdaAdN6ANoCEdAr+PHvWpZOnV9lChoBkdAlo0hYA80UGgHTegDaAhHQK/nduBMBZJ1fZQoaAZHQJXr0/qxC6ZoB03oA2gIR0Cv7vhakhzOdX2UKGgGR0CXJOfbsWweaAdN6ANoCEdAr+/hRO1v23V9lChoBkdAmHc91uBMBmgHTegDaAhHQK/0oVmjCYV1fZQoaAZHQJiVhTn7pFFoB03oA2gIR0Cv9xWluWKNdX2UKGgGR0CYKryHVPN3aAdN6ANoCEdAr/wDpxFRYXV9lChoBkdAl8RarmyPdWgHTegDaAhHQK/85qM3qA11fZQoaAZHQJcmSRwIdENoB03oA2gIR0CwAN4IjW07dX2UKGgGR0CXnAk+HJtBaAdN6ANoCEdAsALIiLVFyHV9lChoBkdAlKMH8GcFyWgHTegDaAhHQLAG6WdEsrd1fZQoaAZHQJQ/jn5i3G5oB03oA2gIR0CwB14u01IidX2UKGgGR0CTD3JmNBGAaAdN6ANoCEdAsAnILux8lXV9lChoBkdAkZ+6dDpkgGgHTegDaAhHQLAK/z6ab4J1fZQoaAZHQJL21flZHNJoB03oA2gIR0CwDXifcvdudX2UKGgGR0CWb4MXrMTwaAdN6ANoCEdAsA3t43WFvnV9lChoBkdAmGOWATZg5WgHTegDaAhHQLAQWTV2A5J1fZQoaAZHQJj1ohib2DhoB03oA2gIR0CwEeC5mRNidX2UKGgGR0COJ/DNyHVPaAdN6ANoCEdAsBXwJ0GNaXV9lChoBkdAmEYNFWn0kGgHTegDaAhHQLAWtBikO7R1fZQoaAZHQJhhaGQCCBhoB03oA2gIR0CwGVDFAE+xdX2UKGgGR0CWRu2VVxS6aAdN6ANoCEdAsBqaynk1dnVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}