File size: 12,762 Bytes
9c3a994 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 |
# -*- coding: utf-8 -*-
import os
import time
import numpy as np
import warnings
import random
from omegaconf.listconfig import ListConfig
from webdataset import pipelinefilter
import torch
import torchvision.transforms.functional as TVF
from torchvision.transforms import InterpolationMode
from torchvision.transforms.transforms import _interpolation_modes_from_int
from typing import Sequence
from michelangelo.utils import instantiate_from_config
def _uid_buffer_pick(buf_dict, rng):
uid_keys = list(buf_dict.keys())
selected_uid = rng.choice(uid_keys)
buf = buf_dict[selected_uid]
k = rng.randint(0, len(buf) - 1)
sample = buf[k]
buf[k] = buf[-1]
buf.pop()
if len(buf) == 0:
del buf_dict[selected_uid]
return sample
def _add_to_buf_dict(buf_dict, sample):
key = sample["__key__"]
uid, uid_sample_id = key.split("_")
if uid not in buf_dict:
buf_dict[uid] = []
buf_dict[uid].append(sample)
return buf_dict
def _uid_shuffle(data, bufsize=1000, initial=100, rng=None, handler=None):
"""Shuffle the data in the stream.
This uses a buffer of size `bufsize`. Shuffling at
startup is less random; this is traded off against
yielding samples quickly.
data: iterator
bufsize: buffer size for shuffling
returns: iterator
rng: either random module or random.Random instance
"""
if rng is None:
rng = random.Random(int((os.getpid() + time.time()) * 1e9))
initial = min(initial, bufsize)
buf_dict = dict()
current_samples = 0
for sample in data:
_add_to_buf_dict(buf_dict, sample)
current_samples += 1
if current_samples < bufsize:
try:
_add_to_buf_dict(buf_dict, next(data)) # skipcq: PYL-R1708
current_samples += 1
except StopIteration:
pass
if current_samples >= initial:
current_samples -= 1
yield _uid_buffer_pick(buf_dict, rng)
while current_samples > 0:
current_samples -= 1
yield _uid_buffer_pick(buf_dict, rng)
uid_shuffle = pipelinefilter(_uid_shuffle)
class RandomSample(object):
def __init__(self,
num_volume_samples: int = 1024,
num_near_samples: int = 1024):
super().__init__()
self.num_volume_samples = num_volume_samples
self.num_near_samples = num_near_samples
def __call__(self, sample):
rng = np.random.default_rng()
# 1. sample surface input
total_surface = sample["surface"]
ind = rng.choice(total_surface.shape[0], replace=False)
surface = total_surface[ind]
# 2. sample volume/near geometric points
vol_points = sample["vol_points"]
vol_label = sample["vol_label"]
near_points = sample["near_points"]
near_label = sample["near_label"]
ind = rng.choice(vol_points.shape[0], self.num_volume_samples, replace=False)
vol_points = vol_points[ind]
vol_label = vol_label[ind]
vol_points_labels = np.concatenate([vol_points, vol_label[:, np.newaxis]], axis=1)
ind = rng.choice(near_points.shape[0], self.num_near_samples, replace=False)
near_points = near_points[ind]
near_label = near_label[ind]
near_points_labels = np.concatenate([near_points, near_label[:, np.newaxis]], axis=1)
# concat sampled volume and near points
geo_points = np.concatenate([vol_points_labels, near_points_labels], axis=0)
sample = {
"surface": surface,
"geo_points": geo_points
}
return sample
class SplitRandomSample(object):
def __init__(self,
use_surface_sample: bool = False,
num_surface_samples: int = 4096,
num_volume_samples: int = 1024,
num_near_samples: int = 1024):
super().__init__()
self.use_surface_sample = use_surface_sample
self.num_surface_samples = num_surface_samples
self.num_volume_samples = num_volume_samples
self.num_near_samples = num_near_samples
def __call__(self, sample):
rng = np.random.default_rng()
# 1. sample surface input
surface = sample["surface"]
if self.use_surface_sample:
replace = surface.shape[0] < self.num_surface_samples
ind = rng.choice(surface.shape[0], self.num_surface_samples, replace=replace)
surface = surface[ind]
# 2. sample volume/near geometric points
vol_points = sample["vol_points"]
vol_label = sample["vol_label"]
near_points = sample["near_points"]
near_label = sample["near_label"]
ind = rng.choice(vol_points.shape[0], self.num_volume_samples, replace=False)
vol_points = vol_points[ind]
vol_label = vol_label[ind]
vol_points_labels = np.concatenate([vol_points, vol_label[:, np.newaxis]], axis=1)
ind = rng.choice(near_points.shape[0], self.num_near_samples, replace=False)
near_points = near_points[ind]
near_label = near_label[ind]
near_points_labels = np.concatenate([near_points, near_label[:, np.newaxis]], axis=1)
# concat sampled volume and near points
geo_points = np.concatenate([vol_points_labels, near_points_labels], axis=0)
sample = {
"surface": surface,
"geo_points": geo_points
}
return sample
class FeatureSelection(object):
VALID_SURFACE_FEATURE_DIMS = {
"none": [0, 1, 2], # xyz
"watertight_normal": [0, 1, 2, 3, 4, 5], # xyz, normal
"normal": [0, 1, 2, 6, 7, 8]
}
def __init__(self, surface_feature_type: str):
self.surface_feature_type = surface_feature_type
self.surface_dims = self.VALID_SURFACE_FEATURE_DIMS[surface_feature_type]
def __call__(self, sample):
sample["surface"] = sample["surface"][:, self.surface_dims]
return sample
class AxisScaleTransform(object):
def __init__(self, interval=(0.75, 1.25), jitter=True, jitter_scale=0.005):
assert isinstance(interval, (tuple, list, ListConfig))
self.interval = interval
self.min_val = interval[0]
self.max_val = interval[1]
self.inter_size = interval[1] - interval[0]
self.jitter = jitter
self.jitter_scale = jitter_scale
def __call__(self, sample):
surface = sample["surface"][..., 0:3]
geo_points = sample["geo_points"][..., 0:3]
scaling = torch.rand(1, 3) * self.inter_size + self.min_val
# print(scaling)
surface = surface * scaling
geo_points = geo_points * scaling
scale = (1 / torch.abs(surface).max().item()) * 0.999999
surface *= scale
geo_points *= scale
if self.jitter:
surface += self.jitter_scale * torch.randn_like(surface)
surface.clamp_(min=-1.015, max=1.015)
sample["surface"][..., 0:3] = surface
sample["geo_points"][..., 0:3] = geo_points
return sample
class ToTensor(object):
def __init__(self, tensor_keys=("surface", "geo_points", "tex_points")):
self.tensor_keys = tensor_keys
def __call__(self, sample):
for key in self.tensor_keys:
if key not in sample:
continue
sample[key] = torch.tensor(sample[key], dtype=torch.float32)
return sample
class AxisScale(object):
def __init__(self, interval=(0.75, 1.25), jitter=True, jitter_scale=0.005):
assert isinstance(interval, (tuple, list, ListConfig))
self.interval = interval
self.jitter = jitter
self.jitter_scale = jitter_scale
def __call__(self, surface, *args):
scaling = torch.rand(1, 3) * 0.5 + 0.75
# print(scaling)
surface = surface * scaling
scale = (1 / torch.abs(surface).max().item()) * 0.999999
surface *= scale
args_outputs = []
for _arg in args:
_arg = _arg * scaling * scale
args_outputs.append(_arg)
if self.jitter:
surface += self.jitter_scale * torch.randn_like(surface)
surface.clamp_(min=-1, max=1)
if len(args) == 0:
return surface
else:
return surface, *args_outputs
class RandomResize(torch.nn.Module):
"""Apply randomly Resize with a given probability."""
def __init__(
self,
size,
resize_radio=(0.5, 1),
allow_resize_interpolations=(InterpolationMode.BICUBIC, InterpolationMode.BILINEAR, InterpolationMode.BILINEAR),
interpolation=InterpolationMode.BICUBIC,
max_size=None,
antialias=None,
):
super().__init__()
if not isinstance(size, (int, Sequence)):
raise TypeError(f"Size should be int or sequence. Got {type(size)}")
if isinstance(size, Sequence) and len(size) not in (1, 2):
raise ValueError("If size is a sequence, it should have 1 or 2 values")
self.size = size
self.max_size = max_size
# Backward compatibility with integer value
if isinstance(interpolation, int):
warnings.warn(
"Argument 'interpolation' of type int is deprecated since 0.13 and will be removed in 0.15. "
"Please use InterpolationMode enum."
)
interpolation = _interpolation_modes_from_int(interpolation)
self.interpolation = interpolation
self.antialias = antialias
self.resize_radio = resize_radio
self.allow_resize_interpolations = allow_resize_interpolations
def random_resize_params(self):
radio = torch.rand(1) * (self.resize_radio[1] - self.resize_radio[0]) + self.resize_radio[0]
if isinstance(self.size, int):
size = int(self.size * radio)
elif isinstance(self.size, Sequence):
size = list(self.size)
size = (int(size[0] * radio), int(size[1] * radio))
else:
raise RuntimeError()
interpolation = self.allow_resize_interpolations[
torch.randint(low=0, high=len(self.allow_resize_interpolations), size=(1,))
]
return size, interpolation
def forward(self, img):
size, interpolation = self.random_resize_params()
img = TVF.resize(img, size, interpolation, self.max_size, self.antialias)
img = TVF.resize(img, self.size, self.interpolation, self.max_size, self.antialias)
return img
def __repr__(self) -> str:
detail = f"(size={self.size}, interpolation={self.interpolation.value},"
detail += f"max_size={self.max_size}, antialias={self.antialias}), resize_radio={self.resize_radio}"
return f"{self.__class__.__name__}{detail}"
class Compose(object):
"""Composes several transforms together. This transform does not support torchscript.
Please, see the note below.
Args:
transforms (list of ``Transform`` objects): list of transforms to compose.
Example:
>>> transforms.Compose([
>>> transforms.CenterCrop(10),
>>> transforms.ToTensor(),
>>> ])
.. note::
In order to script the transformations, please use ``torch.nn.Sequential`` as below.
>>> transforms = torch.nn.Sequential(
>>> transforms.CenterCrop(10),
>>> transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
>>> )
>>> scripted_transforms = torch.jit.script(transforms)
Make sure to use only scriptable transformations, i.e. that work with ``torch.Tensor``, does not require
`lambda` functions or ``PIL.Image``.
"""
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, *args):
for t in self.transforms:
args = t(*args)
return args
def __repr__(self):
format_string = self.__class__.__name__ + '('
for t in self.transforms:
format_string += '\n'
format_string += ' {0}'.format(t)
format_string += '\n)'
return format_string
def identity(*args, **kwargs):
if len(args) == 1:
return args[0]
else:
return args
def build_transforms(cfg):
if cfg is None:
return identity
transforms = []
for transform_name, cfg_instance in cfg.items():
transform_instance = instantiate_from_config(cfg_instance)
transforms.append(transform_instance)
print(f"Build transform: {transform_instance}")
transforms = Compose(transforms)
return transforms
|