Edit model card

AraBERT_token_classification_AraEval24_aug_mlm1k_single

This model is a fine-tuned version of aubmindlab/bert-base-arabert on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8937
  • Precision: 0.0339
  • Recall: 0.0078
  • F1: 0.0126
  • Accuracy: 0.8622

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.4777 1.0 5934 0.7971 0.0063 0.0002 0.0003 0.8729
0.3735 2.0 11868 0.7966 0.0186 0.0019 0.0035 0.8616
0.3377 3.0 17802 0.7854 0.0288 0.0023 0.0042 0.8690
0.306 4.0 23736 0.7845 0.0222 0.0012 0.0023 0.8697
0.2665 5.0 29670 0.7968 0.0511 0.0069 0.0121 0.8635
0.2573 6.0 35604 0.8232 0.0273 0.0039 0.0068 0.8686
0.2242 7.0 41538 0.8429 0.0189 0.0025 0.0044 0.8643
0.2169 8.0 47472 0.8671 0.0261 0.0048 0.0080 0.8630
0.2106 9.0 53406 0.8740 0.0435 0.0104 0.0168 0.8591
0.1956 10.0 59340 0.8937 0.0339 0.0078 0.0126 0.8622

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.13.3
Downloads last month
0
Inference API
Unable to determine this model's library. Check the docs .