AraBERT_token_classification_AraEval24_aug_mlm1k_single
This model is a fine-tuned version of aubmindlab/bert-base-arabert on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8937
- Precision: 0.0339
- Recall: 0.0078
- F1: 0.0126
- Accuracy: 0.8622
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.4777 | 1.0 | 5934 | 0.7971 | 0.0063 | 0.0002 | 0.0003 | 0.8729 |
0.3735 | 2.0 | 11868 | 0.7966 | 0.0186 | 0.0019 | 0.0035 | 0.8616 |
0.3377 | 3.0 | 17802 | 0.7854 | 0.0288 | 0.0023 | 0.0042 | 0.8690 |
0.306 | 4.0 | 23736 | 0.7845 | 0.0222 | 0.0012 | 0.0023 | 0.8697 |
0.2665 | 5.0 | 29670 | 0.7968 | 0.0511 | 0.0069 | 0.0121 | 0.8635 |
0.2573 | 6.0 | 35604 | 0.8232 | 0.0273 | 0.0039 | 0.0068 | 0.8686 |
0.2242 | 7.0 | 41538 | 0.8429 | 0.0189 | 0.0025 | 0.0044 | 0.8643 |
0.2169 | 8.0 | 47472 | 0.8671 | 0.0261 | 0.0048 | 0.0080 | 0.8630 |
0.2106 | 9.0 | 53406 | 0.8740 | 0.0435 | 0.0104 | 0.0168 | 0.8591 |
0.1956 | 10.0 | 59340 | 0.8937 | 0.0339 | 0.0078 | 0.0126 | 0.8622 |
Framework versions
- Transformers 4.30.2
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.13.3
- Downloads last month
- 0