File size: 2,940 Bytes
5d00664
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
177980f
5d00664
 
177980f
5d00664
 
 
 
 
 
 
 
 
 
 
 
 
 
84e392f
5d00664
5c4046f
5d00664
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84e392f
 
5d00664
 
 
 
 
 
d889a42
 
 
5d00664
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d889a42
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
---
language:
- ar
- az
- bg
- de
- el
- en
- es
- fr
- hi
- it
- ja
- nl
- pl
- pt
- ru
- sw
- th
- tr
- ur
- vi
- zh
license: cc-by-nc-4.0
tags:
- language detect
pipeline_tag: text-classification
---

# Multilingual Language Detection Model

## Model Description
This repository contains a multilingual language detection model based on the XLM-RoBERTa base architecture. The model is capable of distinguishing between 21 different languages including Arabic, Azerbaijani, Bulgarian, German, Greek, English, Spanish, French, Hindi, Italian, Japanese, Dutch, Polish, Portuguese, Russian, Swahili, Thai, Turkish, Urdu, Vietnamese, and Chinese.

## How to Use
You can use this model directly with a pipeline for text classification, or you can use it with the `transformers` library for more custom usage, as shown in the example below.

### Quick Start
First, install the transformers library if you haven't already:
```bash
pip install transformers
```

```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("LocalDoc/language_detection")
model = AutoModelForSequenceClassification.from_pretrained("LocalDoc/language_detection")

# Prepare text
text = "Əlqasım oğulları vorzakondu"
encoded_input = tokenizer(text, return_tensors='pt', truncation=True, max_length=512)

# Prediction
model.eval()
with torch.no_grad():
    outputs = model(**encoded_input)

# Process the outputs
logits = outputs.logits
probabilities = torch.nn.functional.softmax(logits, dim=-1)
predicted_class_index = probabilities.argmax().item()
labels = ["az", "ar", "bg", "de", "el", "en", "es", "fr", "hi", "it", "ja", "nl", "pl", "pt", "ru", "sw", "th", "tr", "ur", "vi", "zh"]
predicted_label = labels[predicted_class_index]
print(f"Predicted Language: {predicted_label}")
```



Training Performance

The model was trained over three epochs, showing consistent improvement in accuracy and loss:

    Epoch 1: Training Loss: 0.0127, Validation Loss: 0.0174, Accuracy: 0.9966, F1 Score: 0.9966
    Epoch 2: Training Loss: 0.0149, Validation Loss: 0.0141, Accuracy: 0.9973, F1 Score: 0.9973
    Epoch 3: Training Loss: 0.0001, Validation Loss: 0.0109, Accuracy: 0.9984, F1 Score: 0.9984

Test Results

The model achieved the following results on the test set:

    Loss: 0.0133
    Accuracy: 0.9975
    F1 Score: 0.9975
    Precision: 0.9975
    Recall: 0.9975
    Evaluation Time: 17.5 seconds
    Samples per Second: 599.685
    Steps per Second: 9.424


License

The dataset is licensed under the Creative Commons Attribution-NonCommercial 4.0 International  license. This license allows you to freely share and redistribute the dataset with attribution to the source but prohibits commercial use and the creation of derivative works.



Contact information

If you have any questions or suggestions, please contact us at [[email protected]].