--- license: llama2 base_model: codellama/CodeLlama-7b-hf tags: - generated_from_trainer model-index: - name: sql-code-llama-alan results: [] library_name: peft --- # sql-code-llama-alan This model is a fine-tuned version of [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4576 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - _load_in_8bit: True - _load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 - bnb_4bit_quant_storage: uint8 - load_in_4bit: False - load_in_8bit: True ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 400 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.1992 | 0.0465 | 20 | 2.0335 | | 1.14 | 0.0931 | 40 | 0.8371 | | 0.8045 | 0.1396 | 60 | 0.6549 | | 0.584 | 0.1862 | 80 | 0.5715 | | 0.3807 | 0.2327 | 100 | 0.5561 | | 0.5723 | 0.2792 | 120 | 0.5147 | | 0.4262 | 0.3258 | 140 | 0.5056 | | 0.6375 | 0.3723 | 160 | 0.5191 | | 0.4839 | 0.4188 | 180 | 0.4865 | | 0.3596 | 0.4654 | 200 | 0.4994 | | 0.5285 | 0.5119 | 220 | 0.4803 | | 0.4035 | 0.5585 | 240 | 0.4753 | | 0.6019 | 0.6050 | 260 | 0.4772 | | 0.4663 | 0.6515 | 280 | 0.4670 | | 0.345 | 0.6981 | 300 | 0.4746 | | 0.509 | 0.7446 | 320 | 0.4652 | | 0.3946 | 0.7912 | 340 | 0.4614 | | 0.5714 | 0.8377 | 360 | 0.4614 | | 0.4525 | 0.8842 | 380 | 0.4585 | | 0.3432 | 0.9308 | 400 | 0.4576 | ### Framework versions - PEFT 0.6.0.dev0 - Transformers 4.44.0.dev0 - Pytorch 2.2.2+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1